SUSCEPTIBILITY OF THE DENGUE VECTOR, Aedes aegypti ON THE LARVICIDAL AND REPELLENT ACTIVITY OF RHIZOME PLANT EXTRACTS
Abstract
The insecticidal potential of several plant secondary metabolites provides new hope for dengue vector control in endemic areas. This study evaluated the susceptibility of Aedes aegypti mosquitoes to the larvicidal and repellent activity of rhizome plant extracts. Sixteen extract types of Kaempferia galanga, Alpinia galanga, Zingiber zerumbet, and Curcuma aeruginosa resulted from a maceration extraction based on methanol, ethyl acetate, n-hexane, and butanol solvents were occupied. The temephos-susceptible third-instar-larvae of Ae. aegypti were subjected to larvicidal bioassay. Concentration levels of 50, 100, 250, 500, and 1,000 ppm were used in the initial bioassay test five times replicated where each replicate consisting of 20 larvae. Larval mortality was calculated in 24h and 48h post-exposure. A total of 50 laboratory strain Ae. aegypti aged 3-5 days were placed in a chamber. Repellent cream was applied to the right arm while the left arm served as a control. The arms were inserted into the chamber and the number of mosquitoes perched within 30 minutes were counted. Post-exposure of 50% and 90% lethal exposure (LC50-LC90) and 50% and 90% effective concentration (EC50-EC90) were determined. Within 24 hours, seven extract types indicated effective larvicidal concentrations, namely n-hexane extracts of K. galanga, A. galanga, Z. zerumbet, C. aeruginosa with the LC50 of 18.693, 41.926, 109.247, and 205.500 ppm; methanol of C. aeruginosa (179.291 ppm); and ethyl acetate of A. galanga (306.200 ppm). Six extract types showed the lowest concentrations of repellents, namely ethyl acetate and methanol of A. galanga (1.558% and 2.629%); methanol, ethyl-acetate, and n-hexane of Z. zerumbet (2.525, 3.946 and 4.481%); and n-hexane of K. galanga (4.338%). Aedes aegypti larvae were susceptible to the hexane extract of four rhizome plants while the adults were susceptible to Z. zerumbet and K. galanga extracts. Of these, the hexane extract of the K. galanga affect most or kills/repell more both adult and larvae of Aedes. The stability of extracts, the practical formulation of larvicides and repellents; and the isolation of chemical compounds are important to be investigated in the future.
Full Text:
PDFReferences
Abbott, W.S. 1925. A method for computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265-267.
Adnani, B., Rahmah, Z., Fitrianingsih, A.A. & Setiawan, A.M. 2020. Potential test of ethanol extract from onion (Allium cepa L.) leaves as a repellent to Aedes aegypti. Journal of Islamic Medicine 4(1): 65-75.
Ali, S.I. & Venkatesalu, V. 2020. Evaluation of the larvicidal potential of root and leaf extracts of Saussurea costus (Falc.) Lipsch. against three mosquito vectors: Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. Revista da Sociedade Brasileira de Medicina Tropical 53: e20190018.
Alyahya, H. S., Alkuriji, M.A., Soror, L., Ghazal, N., Alghannam, K. & Shaher, F. M. 2021. Natural extracts as eco-friendly larvicides against Aedes aegypti mosquito, vector of dengue fever virus in Jeddah Governorate. Biosciences Biotechnology Research Asia 18(1): 219-226.
Alipieva, K., Petreska, J., Gil-zquierdo, A., Stefova, M., Evstatieva, L. & Bankova, V. 2010. Influence of the extraction method on the yield of flavonoids and phenolics from Sideritis spp. (Pirin Mountain tea). Natural Product Communications 5(1): 51-54.
Buhler, C., Winkler, V., Runge-Ranzinger, S., Boyce, R. & Horstick, O. 2019. Environmental methods for dengue vector control - A systematic review and meta-analysis. PLoS Neglected Tropical Diseases 13(7): e0007420.
Carneiro, V.C.S., Lucena, L.B., Figueiró, R. & Victório, C.P. 2021. Larvicidal activity of plants from Myrtaceae against Aedes aegypti L. and Simulium pertinax Kollar (Diptera). Revista da Sociedade Brasileira de Medicina Tropical 54: e00922020.
Chan, C.A., Ho, L.Y. & Sit, N.W. 2022. Larvicidal activity and phytochemical profiling of sweet basil (Ocimum basilicum L.) leaf extract against Asian tiger mosquito (Aedes albopictus). Horticulturae 8(5): 443.
Ciau-Mendosa, J.A., Gómez-Rivera, A.S., Canto-Mis, K.L., Chan-Chable, R.J., González-Acosta, C., Moreno-García, M., Correa-Morales, F. & Mis-Avila, P.C. 2022. Susceptibility status to temephos in larval Aedes aegypti and Aedes albopictus (Diptera: Culicidae) populations from Quintana Roo, Southeastern Mexico. Florida Entomologist 105(3): 255-257.
Dinh, T.D.H., Le, Q.T., Nguyen, T.D., Nguyen, T.Q.T., Ho, A.S., Nguyen, V.B., Nguyen, T.V., Hoang, T.H., Nguyen, V.D. & Nguyen, K.L. 2020. Larvicidal activity of Vietnamese Solanum nigrum on mosquitoes Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Journal of Entomological and Acarological Research 52(1): 26-33.
Dohutia, C., Bhattacharyya, D.R., Sharma, S.K., Mohapatra, P.K., Gogoi, P., Mahanta, J. & Prakash, A. 2015. Larvicidal activity of few select indigenous plants of North East India against disease vector mosquitoes (Diptera: Culicidae). Tropical Biomedicine 32(1): 17–23.
El-Sheikh, T.M. Y., Al-Fifi, Z.I.A. & Alabboud, M.A. 2016. Larvicidal and repellent effect of some Tribulus terrestris L., (Zygophyllaceae) extracts against the dengue fever mosquito, Aedes aegypti (Diptera: Culicidae). Journal of Saudi Chemical Society 20(1): 13-19.
Fitri, L., Nurjanah &Yasmin, Y. 2023. Potential of ginger endophytic actinobacteria as Aedes aegypti mosquito larvicide. Serangga 28(1):1-13.
Gan, S.J., Leong, Y.Q., Bin-Barhanuddin, M.F.H., Wong, S.T., Wong, S.F., Mak, J.W. & Ahmad, B.R. 2021. Dengue fever and insecticide resistance in Aedes mosquitoes in Southeast Asia: A review. Parasites & Vectors 14: 315.
Govindarajan, M., Mathivanan, T., Elumalai, K., Krishnappa, K. & Anandan, A. 2011. Ovicidal and repellent activities of botanical extracts against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi (Diptera: Culicidae). Asian Pacific Journal of Tropical Biomedicine 1(1): 43-48.
Gwee, X.W.S., Chua, P.E.Y. & Pang, J. 2021. Global dengue importation: A systematic review. BMC Infectious Diseases 21: 1078.
Idris, M.M., Mudi, S.Y. & Datti, Y. 2014. Phytochemical screening and mosquito repellent activity of the stem bark extracts of Euphorbia balsamifera (Ait). ChemSearch Journal 5(2): 46-51.
Iloki-Assanga, S.B., Lewis-Luján, L.M., Lara-Espinoza, C.L., Gil-Salido, A.A., Fernandez-Angulo, D., Rubio-Pino, J.L. & Haines, D.D. 2015. Solvent effects on phytochemical constituent profiles and antioxidant activities, using four different extraction formulations for analysis of Bucida buceras L. and Phoradendron californicum. BMC Research Notes 8: 396.
Karahan, F., Avsar, C., Ozyigit, I.I. & Berber, I. 2016. Antimicrobial and antioxidant activities of medicinal plant Glycyrrhiza glabra var: gladulifera from different habitats. Biotechnology & Biotechnological Equipment 30(4): 797-804.
Khandagle, A.J., Tare, V.S., Raut, K.D. & Morey, R.A. 2011. Bioactivity of essential oils of Zingiber officinalis and Achyranthes aspera against mosquitoes. Parasitology Research 109: 339-343.
Komalamisra, N., Trongtokit, Y., Rongsriyam, Y. & Apiwathnasorn, C. 2005. Screening for larvicidal activity in some Thai plants against four mosquito vector species. The Southeast Asian Journal of Tropical Medicine and Public Health 36(6): 1412-1422.
Kim, N.J., Byun, S.G., Cho, J.E., Chung, K. & Ahn, Y.J. 2008. Larvicidal activity of Kaempferia galanga rhizome phenylpropanoids towards three mosquito species. Pest Management Science 64(8): 857-862.
Kumar, S., Yadav, A., Yadav, M. & Yadav, J.P. 2017. Effect of climate change on phytochemical diversity, total phenolic content and in vitro antioxidant activity of Aloe vera (L.) Burm.f. BMC Research Notes 10:60.
Li, M-.X., Ma, Y-.P., Zhang, H-.X., Sun, H-.Z., Su, H-.H., Pei, S-.J. & Du, Z-.Z. 2021. Repellent, larvicidal and adulticidal activities of essential oil from Dai medicinal plant Zingiber cassumunar against Aedes albopictus. Plant Diversity 43(4): 317-323.
Mone, F.H., Hossain, S., Hasan, M.T., Tajkia, G. & Ahmed, F. 2019. Sustainable actions needed to mitigate dengue outbreak in Bangladesh. The Lancet Infectious Diseases 19(11): 1166-1167.
Morales, D., Ponce, P., Cevallos, V., Espinosa, P., Vaca, D. & Quezada, W. 2019. Resistance Status of Aedes aegypti to deltamethrin, malathion, and temephos in Ecuador. Journal of the American Mosquito Control Association 35(2): 113-122.
Morgan, J., Salcedo-Sora, J.E., Triana-Chavez, O. & Strode, C., 2022. Expansive and diverse phenotypic landscape of field Aedes aegypti (Diptera: Culicidae) larvae with Differential susceptibility to temephos: Beyond metabolic detoxification. Journal of Medical Entomology 59(1): 192-212.
Moyes, C.L., Vontas, J., Martins, A.J., Ng, L.C., Koou, S.Y., Dusfour, I., Raghavendra, K., Pinto, J., Corbel, V., David, J.P. & Weetman, D. 2017. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Neglected Tropical Diseases 11(7): e0005625.
Mukhtar, M.M. & Ibrahim, S.S. 2022. Temporal evaluation of insecticide resistance in populations of the major arboviral vector Aedes aegypti from northern Nigeria. Insects 13(2): 187.
Murini, T., Wahyuningsih, M.S.H. & Satoto, T.B.T. 2017. Comparison of methanol, ethyl acetates and chloroform extracts of Zingiber zerumbet (L) Smith in larvisidal activities on Aedes aegypti (Diptera: Culicidee) larvae. Majalah Farmaseutik 13(2): 88-94.
Nguyen, B.V., Hung, N.H., Satyal, P., Dai, D.N., Huong, L.T., Hien, V.T., Hoan, L.C., Vi, L.D.T. & Setzer, W. N. 2022a. Chemical composition and pesticidal activity of Alpinia galanga (L.) Willd. essential oils in Vietnam. Records of Natural Products 16(2): 182-187.
Nguyen, N.V.T., Duong, N.T., Nguyen, K.N.H., Bui, N.T., Pham, T.L.T., Nguyen, K.T., Le, P.H. & Kim, K.H. 2022b. Effect of extraction solvent on total phenol, flavonoid content, and antioxidant activity of Avicenna officinalis. Biointerface Research in Applied Chemistry 12(2): 2678-2690.
Ninthya, R. & Dhivya, R. 2019. Phytochemical screening and repellent activity of leaf extracts of Ocimum basilicum and Albizia amara against the mosquito Culex quinquefasciatus. International Journal of Research and Review 6(3): 164-170.
Oliveros-Diaz, A.F., Pájaro-González, Y., Cabrera-Barraza, J., Hill, C., Quiñones-Fletcher, W., Olivero-Verbel, J. & Díaz Castillo, F. 2022. Larvicidal activity of plant extracts from Colombian North Coast against Aedes aegypti L. mosquito larvae. Arabian Journal of Chemistry 15(12): 104365.
Palomino, M., Pinto, J., Yañez, P., Cornelio, A., Dias, L., Amorim, Q., Martins, A.J., Lenhart, A. & Lima, J.B.P. 2022. First national-scale evaluation of temephos resistance in Aedes aegypti in Peru. Parasites & Vectors 15(1): 254.
Pereira, A.P.M., de Sousa, B.A., Rosa, P.V.S., Lages, M.G.G., Silva, F.N., de Alencar, L.K.B., de Amorim, N.M.J., Soares, F. das C., Santos, R. C. dos., de Castro, G.L.C., de Araújo-Neto, A.P. & Everton, G.O. 2022. Larvicidal effect of the essential oil of Curcuma xanthorrhiza (ginger java) for Aedes aegypti. Research, Society and Development 11(15): e432111536785.
Phasomkusolsil, S. & Soonwera, M. 2010. Insect repellent activity of medicinal plant oils against Aedes aegypti (Linn.), Anopheles minimus (Theobald), and Culex quinquefasciatus Say based on protection time and biting rate. The Southeast Asian Journal of Tropical Medicine and Public Health 41: 831.
Phukerd, U. & Soonwera, M. 2014. Repellency of essential oils extracted from Thai native plants against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say). Parasitology Research 113: 3333–3340.
Piazzoni, M., Negri, A., Brambilla, E., Giussani, L., Pitton, S., Caccia, S., Epis, S., Bandi, C., Locarno, S. & Lenardi, C. 2022. Biodegradable floating hydrogel baits as larvicide delivery systems against mosquitoes. Soft Matter 18: 6443-6452.
Poonsri, W., Pengsook, A., Pluempanupat, W. & Yooboon, T. 2019. Evaluation of Alpinia galanga (Zingiberaceae) extracts and isolated trans-cinnamic acid on some mosquitoes larvae. Chemical and Biological Technologies in Agriculture 6: 17
Prawirasudarga, F.D., Amin, A.A. & Tumbelaka, L.I. 2018. Potensi Ekstrak Temu Ireng (Curcuma aeruginosa) Sebagai Larvasida Terhadap Larva Nyamuk Aedes aegypti. Bogor: IPB Scientific Repository.
Qi, M., Hua, X., Peng, X., Yan, X. & Lin, J. 2018. Comparison of chemical composition in the buds of Aralia elata from different geographical origins of China. Royal Society Open Science 5: 180676.
Rahayu, R., Hasmiwati, Muslima, R.U., Devita, R., Yani, Y.P., Melta, D. & Fatimah, G. 2021. Entomological indicator and susceptibility status of Aedes aegypti (L.) to temephos in dengue-endemic regencies/cities in West Sumatra. International Journal of Mosquito Research 8(5): 7-10.
Rasli, R., Cheong, Y.L., Che-Ibrahim, M.K., Farahininajua Fikri, S.F., Norzali, R.N., Nazarudin, N.A., Hamdan, N.F., Muhamed K.A., Hafisool, A.A., Azmi, R.A., Ismail, H.A., Ali, R., Ab Hamid, N., Taib, M.Z., Omar, T., Wasi Ahmad, N. & Lee, H.L. 2021. Insecticide resistance in dengue vectors from hotspots in Selangor, Malaysia. PLoS Neglected Tropical Diseases 15(3): e0009205.
Rasul, M.G. 2018. Conventional extraction methods use in medicinal plants, their advantages and disadvantages. International Journal of Basic Sciences and Applied Computing 2(6): 10-14.
Sampaio, B.L. & Da-Costa, F.B. 2018. Influence of abiotic environmental factors on the main constituents of the volatile oils of Tithonia diversifolia. Revista Brasileira de Farmacognosia 28(2): 135-144.
Satoto, T.B.T., Maniam, S., Ganesen, K. & Ernaningsih. 2013. Larvicidal effect of ether and chloroform extract of Kaempferia galanga against the larvae of Aedes aegypti (Diptera: Culicidae). International Journal of Pharmacognosy and Phytochemical Research 5(2): 96-100.
Sayono, S., Anwar, R. & Sumanto, D. 2020. Evaluation of toxicity in four extract types of tuba root against dengue vector, Aedes aegypti (Diptera: Culicidae) larvae. Pakistan Journal of Biological Sciences 23: 1530-1538.
Schorkopf, D.L., Spanoudis, C.G., Mboera, L.E., Mafra-Neto, A., Ignell, R. & Dekker, T. 2016. Combining attractants and larvicides in biodegradable matrices for sustainable mosquito vector control. PLoS Neglected Tropical Diseases 10(10): e0005043.
Shetu, H.J., Trisha, K.T., Sikta, S.A., Anwar, R., Rashed, S.S.B. & Dash, P.R. 2018. Pharmacological importance of Kaempferia galanga (Zingiberaceae): A mini review. International Journal of Research in Pharmaceutical Sciences 3(3): 32-39.
Srisawat, N., Thisyakorn, U., Ismail, Z., Rafiq, K. & Gubler, D. J., on behalf of ADVA-ISNTD World Dengue Day Committee. 2022. World Dengue Day: A call for action. PLoS Neglected Tropical Diseases 16(8): e0010586.
Statistics Indonesia. 2022. Production of Medicinal Plants 2019-2021. https://www.bps.go.id/indicator/55/63/1/produksi-tanaman-biofarmaka-obat-.html [ 14 November 2022]
Sumarni S., Sudarmin, S. & Sumarti, S.S. 2019. The scientification of jamu: A study of Indonesian’s traditional medicine. Journal of Physics: Conference Series 1321: 032057.
Susilowati, I.T., Harningsih, T. & Vidyaningrum, I.A. 2021. Larvicidal activity of turmeric (Curcuma domestica) extract against Aedes aegypti L. Jurnal Biologi Lingkungan, Industri Kesehatan 8(1): 1-9.
Tawatsin, A., Wratten, S.D., Scott, R.R., Thavara, U. & Techadamrongsin, Y. 2001. Repellency of volatile oils from plants against three mosquito vectors. Journal of Vector Ecology 26: 76–82.
Tian, N., Zheng, J-.X., Guo, Z-.Y., Li, L-.H., Xia, S., Lv, S. & Zhou, X-.N. 2022. Dengue incidence trends and its burden in major endemic regions from 1990 to 2019. Tropical Medicine and Infectious Disease 7: 180.
Valle, D., Bellinato, D.F., Viana-Medeiros, P.F., Lima, J.B.P. & Martins-Junior, A.J. 2019. Resistance to temephos and deltamethrin in Aedes aegypti from Brazil between 1985 and 2017. Memorias do Instituto Oswaldo Cruz 114: e180544.
World Health Organization (WHO). 2009. Guidelines For Efficacy Testing Of Mosquito Repellents For Human Skin. Geneva, Switzerland: Department of Control of Neglected Tropical Diseases.
Zeng, Z., Zhan, J., Chen, L. & Cheng, S. 2021. Global, regional, and national dengue burden from 1990 to 2017: A systematic analysis based on the global burden of disease study 2017. EClinical Medicine 32: 100712.
Refbacks
- There are currently no refbacks.