MITOCHONDRIAL DNA BASED PHYLOGENY AND HAPLOTYPE NETWORKING OF EUROPEAN HONEYBEE Apis mellifera L. IN BANGLADESH

Jannatul Yeasmin Joaty, Md. Mamunur Rahman, Md. Ruhul Amin, Md. Arifur Rahman Khan, Jahidul Hassan

Abstract


The European honeybee, Apis mellifera L. is the most widely used species in apiculture. Bangladesh can be suggested as evolutionary significant zone based on the global analysis of its diversity. In the world, there are 33 different A. mellifera subspecies, of which 11 are widely utilized. The present study aims to reveal the genetic diversity, distribution pattern and haplotype networking of the available A. mellifera subspecies in Bangladesh. The sampling was carried out from 18 localities of Bangladesh based on nectarine sources and the molecular analysis was conducted using 609 bp of mitochondrial Cytochrome oxidase subunit-1 (COI) genes. The phylogenetic analysis based on Neighbor-Joining and Maximum-Likelihood compositions from 18 nucleotide sequences (MW428209-MW428226) of the collected samples revealed 7 types of A. mellifera subspecies for the first time in Bangladesh. A total of 82 variable sites of nucleotide composition were observed of which 26 sites were parsimony informative. Remarkable genetic diversity and distribution patterns appeared in central and southern regions of Bangladesh mediated through A. mellifera adami, A. mellifera capensis and A. mellifera sicula. A. mellifera macedonica, implying the diversification and habituation of A. mellifera subspecies in the Bangladesh context. The haplotype diversity of the identified A. mellifera subspecies detected 14 new haplotypes (COIH05-COIH18) for the first time in Bangladesh. Haplotype networking pattern inferred the recent expansion of population in this geographical proximity along with the phylogeographic distribution of the recent A. mellifera clades in different parts of the world. The findings of this study will provide reliable molecular information in the world honeybee gene pool about the diversified occurrence of A. mellifera subspecies in this country and will shed light on the implication of its uses for modernizing the apiculture sector of Bangladesh.


Full Text:

PDF

References


Avise, J.C., Arnold, J., Ball, R.M., Bermingham, E., Lamb, T., Neigel, J.E., Reeb, C.A. & Saunders, N.C. 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics 18(1): 489-522.

Bouga, M., Harizanis, P.C., Kilias, G. & Alahiotis, S. 2005. Genetic divergence and phylogenetic relationships of honey bee Apis mellifera (Hymenoptera: Apidae) populations from Greece and Cyprus using PCR–RFLP analysis of three mtDNA segments. Apidologie 36(3): 335-344.

Cánovas, F., De la Rúa, P., Serrano, J. & Galián, J. 2008. Geographical patterns of mitochondrial DNA variation in Apis mellifera iberiensis (Hymenoptera: Apidae). Journal of Zoological Systematics and Evolutionary Research 46(1): 24-30.

Calfee, E., Agra, M.N., Palacio, M.A., Ramírez, S.R. & Coop, G. 2020. Selection and hybridization shaped the rapid spread of African honey bee ancestry in the Americas. PLoS genetics 16(10): 1-36.

Clement, M., Posada, D.C. K.A. & Crandall, K.A. 2000. TCS: A computer program to estimate gene genealogies. Molecular Ecology 9(10): 1657-1659.

Collet, T., Ferreira, K.M., Arias, M.C., Soares, A.E.E. & Del Lama, M.A. 2006. Genetic structure of Africanized honeybee populations (Apis mellifera L.) from Brazil and Uruguay viewed through mitochondrial DNA COI–COII patterns. Heredity 97(5): 329-335.

Crozier, R.H. & Crozier, Y.C. 1993. The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome organization. Genetics 133(1): 97-117.

Garnery, L., Franck, P., Baudry, E., Vautrin, D., Cornuet, J.M. & Solignac, M. 1998. Genetic diversity of the west European honey bee (Apis mellifera mellifera and A. m. iberica) II. Microsatellite loci. Genetics Selection Evolution 30(Supplement): S49-S74.

Gupta, R.K. 2014. Chapter 2: Taxonomy and distribution of different honeybee species. Gupta, R.K., Reybroeck, W., van Veen, J.W. & Gupta, A. (eds.). Beekeeping for Poverty Alleviation and Livelihood Security, pp. 63-103. Dordrecht: Springer.

Han, F., Wallberg, A. & Webster, M.T. 2012. From where did the Western honeybee (Apis mellifera) originate? Ecology and Evolution 2(8): 1949-1957.

Ilyasov, R.A., Kutuev, I.A., Petukhov, A.V., Poskryakov, A.V. & Nikolenko, A.G. 2011. Phylogenetic relationships of dark European honeybees Apis mellifera mellifera L. from the Russian Ural and West European populations. Journal of Apicultural science 55(1): 67-76.

Ilyasov, R.A., Lee, M.L., Takahashi, J.I., Kwon, H.W. & Nikolenko, A. G. 2020. A revision of subspecies structure of western honey bee Apis mellifera. Saudi Journal of Biological Sciences 27(12): 3615-3621.

Ilyasov, R.A., Han, G.Y., Lee, M.L., Kim, K.W., Park, J.H., Takahashi, J I., Kwon, H.W. & Nikolenko, A.G. 2021. Phylogenetic relationships among honey bee subspecies Apis mellifera caucasia and Apis mellifera carpathica based on the sequences of the mitochondrial genome. Russian Journal of Genetics57(6): 711-723.

Islam, M.R., Chhay, L., Mian, M.M. & Nasry, A.A.N.B. 2016. The financial analysis of apiculture profitability in Bangladesh. Asian Journal of Agricultural Extension, Economics & Sociology 9(2): 1-8.

Johny, M.I.J., Hasbulah, R.L.A.H., Ador, K., Rahman, H., Sam, L.M., Gobilik, J., Ahmad, A. H.B., Majampan, J. & Benedick, S. 2021. Assessment of pests and predators infestation, and the performance of honeybee (Apis cerana FABR.) colonies in Langstroth Modified Beehives (LMB). Serangga 26(2): 118-131.

Kek, S.P., Chin, N.L., Tan, S.W., Yusof, Y.A. & Chua, L.S. 2017. Molecular identification of honey entomological origin based on bee mitochondrial 16S rRNA and COI gene sequences. Food Control 78: 150-159.

Kumar, S., Stecher, G. & Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33(7): 1870-1874.

Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35(6): 1547.

Lombogia, C.A., Posangi, J., Pollo, H.N., Tulung, M. & Tallei, T.E. 2020. Assessment of Genetic Variation in Apis nigrocincta (Hymenoptera: Apidae) in Sulawesi Revealed by Partial Mitochondrial Cytochrome Oxidase I Gene Sequences. Scientifica 2020: 1609473.

Martimianakis, S., Klossa-Kilia, E., Bouga, M. & Kilias, G. 2011. Phylogenetic relationships of Greek Apis mellifera subspecies based on sequencing of mtDNA segments (COI and ND5). Journal of Apicultural Research 50(1): 42-50.

Munoz, I., Stevanovic, J., Stanimirovic, Z. & De la Rua, P. 2012. Genetic variation of from Serbia inferred from mitochondrial analysis. Journal of Apicultural Science 56(1): 59-69.

Ojha, R., Jalali, S.K., Poorani, J. & Murthy, K.S. 2016. Genetic variation among different Indian populations of cabbage diamondback moth (Plutella xylostella; Lepidoptera: Plutellidae) based on mitochondrial DNA. Molecular Entomology 7: 1-7.

Oleksa, A., Kusza, S. & Tofilski, A. 2021. Mitochondrial DNA suggests the introduction of honeybees of African ancestry to East-Central Europe. Insects 12(5): 410.

Özdil, F. & Ilhan, F. 2012. Phylogenetic relationship of Turkish Apis mellifera subspecies based on sequencing of mitochondrial cytochrome C oxidase I region. Genetics and Molecular Research 11(2): 1130-1141.

Pedersen, B. V. 1996. On the phylogenetic position of the Danish strain of the black honeybee (the Læsø bee), Apis mellifera mellifera L. (Hymenoptera: Apidae) inferred from mitochondrial DNA sequences. Insect Systematics & Evolution 27(3): 241-250.

Rahman, M.M., Hosoishi, S. & Ogata, K. 2017a. Phylogenetic position of the western Bangladesh populations of weaver ant, Oecophylla smaragdina (Fabricius) (Hymenoptera, Formicidae). Sociobiology 64(4): 437-441.

Rahman, M.M., Hosoishi, S. & Ogata, K. 2017b. Phylogenetic analysis reveals the overlapping distribution of the Indian and Southeast Asian clades of Oecophylla smaragdina (Fabricius) (Hymenoptera, Formicidae) in central Bangladesh. Journal of the Faculty of Agriculture, Kyushu University 62(2): 429-434.

Saitou, N. & Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4): 406-425.

Sivaram, V. 2012. Status, Prospects and Strategies for Development of Organic Beekeeping in the South Asian Countries. Bangalore University: Division of Apiculture and Biodiversity, Department of Botany, Bangalore University.

Solorzano, C.D., Szalanski, A.L., Kence, M., McKern, J.A., Austin, J.W. & Kence, A. 2009. Phylogeography and population genetics of honey bees (Apis mellifera) from Turkey based on COI-COII sequence data. Sociobiology 53(1): 237-246.

Tamura, K. & Nei, M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10(3): 512-526.

Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30(12): 2725-2729.

Tan, H.W., Liu, G.H., Dong, X., Lin, R.Q., Song, H.Q., Huang, S.Y., Yuan, Z.G., Zhao, G.H., & Zhu, X.Q. 2011. The complete mitochondrial genome of the Asiatic cavity-nesting honeybee Apis cerana (Hymenoptera: Apidae). Plos one 6(8); e23008.

Teixeira, S., Cambon‐Bonavita, M.A., Serrão, E.A., Desbruyeres, D. & Arnaud‐Haond, S. 2011. Recent population expansion and connectivity in the hydrothermal shrimp Rimicaris exoculata along the Mid‐Atlantic Ridge. Journal of Biogeography 38(3): 564-574.

Tihelka, E., Cai, C., Pisani, D. & Donoghue, P.C. 2020. Mitochondrial genomes illuminate the evolutionary history of the Western honey bee (Apis mellifera). Scientific Reports 10(1): 1-10.

Wilson, E.O. 1971. The Insect Societies. Cambridge: Belknap Press.

Zhao, W., Tan, K., Zhou, D., Wang, M., Cheng, C., Yu, Z., Miao, Y. & He, S. 2014. Phylogeographic analysis of Apis cerana populations on Hainan Island and southern mainland China, based on mitochondrial DNA sequences. Apidologie 45(1): 21-33.


Refbacks

  • There are currently no refbacks.