EFFECT OF NUTRIENT AND DENSITY AGAINST THE SUSCEPTIBILITY STATUS OF Aedes aegypti AND Aedes albopictus TOWARDS DIAGNOSTIC DOSE OF MALATHION AND PERMETHRIN

Salinah Abdul Farouk, Zairi Jaal, Siti Nasuha Hamzah

Abstract


The knockdown 50% values (KT50) of Aedes aegypti and Aedes albopictus with variable nutrient and density conditions were determined based on World Health Organisation (WHO) Adult Bioassay standard protocol towards diagnostic dose of malathion (5%) and permethrin (0.75%) and the effect of nutrient and density on Aedes susceptibility status were investigated. Our results revealed that the susceptibility of these Aedes mosquitoes against malathion at F (4, 116) = 42.103, p<0.05 and permethrin at F (4, 121) = 45.138, p<0.05, gives the most delayed knockdown when fed with the optimum amount of nutrient which is 70mg compared with the lower amount of nutrient and the survival decreased once the nutrient amount was increased more than this amount. For density effect against Aedes susceptible status, at the highest density (600 larvae) examined, there was proportionally more larval mortality where the KT50 value was at the lowest value when compared with the optimal density which was between 150 to 250 larvae against malathion at F (6, 159) = 62.203, p<0.05 and permethrin at F (6, 148) = 57.431, p<0.05. However, the effect of nutrient and density factor of the different Aedes species significantly impacted their susceptibility to malathion and permethrin. The time required to knock down 50% (KT₅₀) of Ae. albopictus mosquitoes against the diagnostic dose of malathion as well as permethrin were relatively delayed compared to the values obtained by Ae. aegypti mosquitoes even though the environmental conditions were the same (p<0.05).

 


Full Text:

PDF

References


Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18(2): 265–267.

Agnew, P., Hide, M., Sidobre, C. & Michalakis, Y. 2002. A minimalist approach to the effects of density‐dependent competition on insect life‐history traits. Ecological Entomology 27(4): 396-402.

Alto, B.W., Lounibos, L.P., Higgs, S. & Juliano, S.A. 2005. Larval competition differentially affects arbovirus infection in Aedes mosquitoes. Ecology 86(12): 3279-3288.

Alto, B.W., Lounibos, L.P., Mores, C.N. & Reiskind, M.H. 2008. Larval competition alters susceptibility of adult Aedes mosquitoes to dengue infection. Proceedings of the Royal Society of London B: Biological Sciences 275(1633): 463-471.

Arrivillaga, J. & Barrera, R. 2004. Food as a limiting factor for Aedes aegypti in water-storage containers. Journal of Vector Ecology 29: 11-20.

Chua, K.B., Chua, I.L., Chua, I.E. & Chua, K.H. 2005. Effect of chemical fogging on immature Aedes mosquitoes in natural field conditions. Singapore Medical Journal 46(11): 639-644.

Couret, J., Dotson, E. & Benedict, M. Q. 2014. Temperature, larval diet, and density effects on development rate and survival of Aedes aegypti (Diptera: Culicidae). PLoS One 9(2): e87468.

Elia-Amira, N.M.R., Chen, C.D., Lau, K.W., Lee, H.L., Low, V.L., Norma-Rashid, Y. & Sofian-Azirun, M. 2018. Organophosphate and organochlorine resistance in larval stage of Aedes albopictus (Diptera: Culicidae) in Sabah, Malaysia. Journal of Economic Entomology 111(5): 2488-2492.

Farjana, T., Tuno, N. & Higa, Y. 2012. Effects of temperature and diet on development and interspecies competition in Aedes aegypti and Aedes albopictus. Medical and Veterinary Entomology 26(2): 210-217.

Ferreira, G.L. 2012. Global dengue epidemiology trends. Revista do Instituto de Medicina Tropical de São Paulo 54: 5-6.

Gilles, J.R.L., Lees, R.S., Soliban, S.M. & Benedict, M.Q. 2011. Density-dependent effects in experimental larval populations of Anopheles arabiensis (Diptera: Culicidae) can be negative, neutral, or over compensatory depending on density and diet levels. Journal of Medical Entomology 48(2): 296-304.

Gubler, D.J. 1998. Epidemic dengue and dengue hemorrhagic fever: a global public health problem in the 21st century. In W.M. Scheld, D. Armstrong, & J.M. Hughes, Emerging infections 1. ASM Press. Washington D.C pp. 1-14.

Guzman, M.G., Halstead, S.B., Artsob, H., Buchy, P., Farrar, J., Gubler, D.J., Hunsperger, E., Kroeger, A., Margolis, H.S., Martínez, E. & Nathan, M.B. 2010. Dengue: A continuing global threat. Nature Reviews Microbiology 8: S7-S16.

Hamzah, S.N. & Alias, Z. 2016a. Developmental expression and oxidative stress induction of proteome of glutathione S-transferases in Aedes albopictus (Diptera: Culicidae). Journal of Asia-Pacific Entomology 19(3): 869-875.

Hamzah, S.N. & Alias, Z. 2016b. Purification, expression and partial characterisation of glutathione s-transferases (GSTs) from three different strains of Aedes albopictus (Diptera: Culicidae). Tropical Biomedicine 33: 335-347.

Hamzah, S.N., Farouk, S.A. & Alias, Z. 2019. Isoenzymes of Aedes albopictus (Diptera: Culicidae) Glutathione S-transferases: Isolation and expression after acute insecticide treatment. Pesticide Biochemistry and Physiology 153: 116–121.

Hemingway, J. & Ranson, H. 2000. Insecticide resistance in insect vectors of human disease. Annual Review of Entomology 45(1): 371-391.

Jirakanjanakit, N., Leemingsawat, S., Thongrungkiat, S., Apiwathnasorn, C., Singhaniyom, S., Bellec, C. & Dujardin, J.P. 2007. Influence of larval density or food variation on the geometry of the wing of Aedes (Stegomyia) aegypti. Tropical Medicine & International Health 12(11): 1354-1360.

Koou, S.Y., Chong, C.S., Vythilingam, I., Ng, L.C. & Lee, C.Y. 2014. Pyrethroid resistance in Aedes aegypti larvae (Diptera: Culicidae) from Singapore. Journal of Medical Entomology 51(1): 1-12.

Kulma, K., Saddler, A. & Koella, J.C. 2013. Effects of age and larval nutrition on phenotypic expression of insecticide-resistance in Anopheles mosquitoes. PLoS ONE 8(3): e58322.

Landry, S.V., DeFoliart, G.R. & Hogg, D.B. 1988. Adult body size and survivorship in a field population of Aedes triseriatus. Journal of the American Mosquito Control Association 4(2): 121-128.

Legros, M., Lloyd, A.L., Huang, Y. & Gould, F. 2009. Density-dependent intraspecific competition in the larval stage of Aedes aegypti (Diptera: Culicidae): Revisiting the current paradigm. Journal of Medical Entomology 46(3): 409-419.

Li, C.F., Lim, T.W., Han, L.L. & Fang, R.A. 1985. Rainfall, abundance of Aedes aegypti and dengue infection in Selangor, Malaysia. The Southeast Asian Journal of Tropical Medicine and Public Health 16(4): 560-568.

Lord, C.C. 1998. Density dependence in larval Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology 35(5): 825-829.

Lumjuan, N., Rajatileka, S., Changsom, D., Wicheer, J., Leelapat, P., Prapanthadara, L.A., Somboon, P., Lycett, G. & Ranson, H. 2011. The role of the Aedes aegypti Epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides. Insect Biochemistry and Molecular Biology 41: 203-209.

Mackenzie, J.S., Gubler, D.J. & Petersen, L.R. 2004. Emerging flaviviruses: The spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nature Medicine 10(12s): S98.

Mohiddin, A., Jaal, Z., Lasim, A. M., Dieng, H. & Zuharah, W.F. 2015. Assessing dengue outbreak areas using vector surveillance in north east district, Penang Island, Malaysia. Asian Pacific Journal of Tropical Disease 5(11): 869-876.

Mori, A. 1979. Effects of larval density and nutrition on some attributes of immature and adult Aedes albopictus. Tropical Medicine 21(2): 85-103.

Nasci, R.S. 1986. The size of emerging and host-seeking Aedes aegypti and the relation of size to blood-feeding success in the field. Journal of American Mosquito Control Association 2(1): 61-62.

Nasci, R.S. 1991. Influence of larval and adult nutrition on biting persistence in Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology 28(4): 522-526.

Nasci, R.S. & Mitchell, C.J. 1994. Larval diet, adult size, and susceptibility of Aedes aegypti (Diptera: Culicidae) to infection with Ross River virus. Journal of Medical Entomology 31(1): 123-126.

Nayar, J.K. 1969. Effects of larval and pupal environmental factors on biological status of adults at emergence in Aedes taeniorhynchus (Wied.). Bulletin of Entomological Research 58(4): 811-827.

Oliver, S.V. & Brooke, B.D. 2013. The effect of larval nutritional deprivation on the life history and DDT resistance phenotype in laboratory strains of the malaria vector Anopheles arabiensis. Malaria Journal 12:44.

Packierisamy, P.R., Ng, C.W., Dahlui, M., Inbaraj, J., Balan, V.K., Halasa, Y.A. & Shepard, D.S. 2015. Cost of dengue vector control activities in Malaysia. The American Journal of Tropical Medicine and Hygiene 93(5): 1020-1027.

Pridgeon, J.W., Pereira, R.M., Becnel, J.J., Allan, S.A., Clark, G.G. & Linthicum, K.J. 2008. Susceptibility of Aedes aegypti, Culex quinquefasciatus Say, and Anopheles quadrimaculatus Say to 19 pesticides with different modes of action. Journal of Medical Entomology 45(1): 82-87.

Reiskind, M.H & Lounibos, L.P. 2009. Effects of intraspecific larval competition on adult longevity in the mosquitoes Aedes aegypti and Aedes albopictus. Medical and Veterinary Entomology 23(1): 62-68.

Renshaw, M., Service, M.W. & Birley, M.H. 1993. Density‐dependent regulation of Aedes cantans (Diptera: Culicidae) in natural and artificial populations. Ecological Entomology 18(3): 223-233.

Rosilawati, R, Lee, H.L., Nazni, W.A., Nurulhusna, A.H., Roziah, A., Khairul Asuad, M., Siti Futri Farahininajua, F., Mohd Farihan, M.Y. & Ropiah, J. 2017. Pyrethroid resistance status of Aedes (Stegomyia) Aegypti (Linneaus) from dengue endemic areas in peninsular Malaysia. International Medical Journal Malaysia 16(2):73-78.

Rozilawati, H., Mohd Masri, S., Tanaselvi, K., Mohd Zahari, T.H., Zairi, J., Nazni, W.A. & Lee, H.L. 2017. Life table characteristics of Malaysian strain Aedes albopictus (Skuse). Serangga 22(1): 85-121.

Smith, D.L., Dushoff, J. & McKenzie, F.E. 2004. The risk of a mosquito-borne infection in a heterogeneous environment. PLoS Biology 2(11): e368.

Sumanochitrapon, W., Strickman, D., Sithiprasasna, R., Kittayapong, P. & Innis, B.L. 1998. Effect of size and geographic origin of Aedes aegypti on oral infection with dengue-2 virus. The American Journal of Tropical Medicine and Hygiene 58(3): 283-286.

Teng, H.J. & Apperson, C.S. 2000. Development and survival of immature Aedes albopictus and Aedes triseriatus (Diptera: Culicidae) in the laboratory: effects of density, food and competition on response to temperature. Journal of Medical Entomology 37(1): 40-52.

World Health Organization. 2016. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. World Health Organization, Geneva 2.

Wan-Norafikah, O., Nazni, W.A., Lee, H.L., Zainol-Ariffin, P. & Sofian-Azirun, M. 2013. Susceptibility of Aedes albopictus Skuse (Diptera: Culicidae) to permethrin in Kuala Lumpur, Malaysia. Asian Biomedicine 7(1): 51-62.

Xue, R.D., Barnard, D.R. & Schreck, C.E. 1995. Influence of body size and age of Aedes albopictus on human host attack rates and the repellency of deet. Journal of the American Mosquito Control Association 11(1): 50-53.

Yakob, L., Alphey, L. & Bonsall, M.B. 2008. Aedes aegypti control: the concomitant role of competition, space and transgenic technologies. Journal of Applied Ecology 45(4): 1258-1265.

Yeap, H.L., Endersby, N.M., Johnson, P. H., Ritchie, S.A. & Hoffmann, A.A. 2013. Body size and wing shape measurements as quality indicators of Aedes aegypti mosquitoes destined for field release. The American Journal of Tropical Medicine and Hygiene 89(1): 78–92.

Yoshioka, M., Couret, J., Kim, F., McMillan, J., Burkot, T. R., Dotson, E. M., Kitron, U. & Vazquez-Prokopec, G. M. 2012. Diet and density dependent competition affect larval performance and oviposition site selection in the mosquito species Aedes albopictus (Diptera: Culicidae). Parasites & Vectors 5: 225.

Zeller, M. & Koella, J.C. 2016. Effects of food variability on growth and reproduction of Aedes aegypti. Ecology and Evolution 6(2): 552-559.


Refbacks

  • There are currently no refbacks.