Carbon Emission from Buildings: An Application of Life Cycle Assessment (Pelepasan Karbon daripada Bangunan: Satu Penggunaan Penilaian Kitaran Hayat)

MURNIRA OTHMAN, AHMAD FARIZ MOHAMED

Abstract


ABSTRACT: Buildings sector contribute to approximately 40% of carbon emissions, calling for the urge to tackle the problem. Carbon emission is mainly associated with the use of enormous amounts of energy during the operational phase in the building life cycle. Carbon emission from a building can be determined by measuring energy used starting from building material preparation until building’s end of life. There is a substantial literature on determining the embodied energy (EE) of materials and carbon emission especially using Life Cycle Assessment (LCA) which considers all stages in the building life cycle. The application of LCA provides a tool for complete measurement of building effects on the environment and indirectly contributes to mitigation measures that could be applied in the whole building construction process and building life cycle that would contribute to an environment friendly and effective built environment. Thus, this paper discusses the application of LCA in building sector to determine which phases in the building life cycle that consumes more energy and releases more carbon emission. The application of LCA is very appropriate in assessing the performance of a building where effective mitigation measures could be identified to improved efficiency and helping national energy and natural resource conservation.

Keywords: Carbon emission; building; natural; life cycle assessment

 

ABSTRAK: Sektor bangunan menyumbang kepada lebih kurang 40% daripada pelepasan karbon, menyeru gesaan untuk menangani masalah ini. Pelepasan karbon sebahagian besarnya dikaitkan dengan penggunaan tenaga yang besar semasa fasa operasi dalam kitar hayat bangunan. Pelepasan karbon daripada bangunan boleh ditentukan dengan mengukur tenaga yang digunakan bermula daripada membina penyediaan bahan sehingga keadaan akhir bangunan. Terdapat banyak penulisan dalam menentukan ‘embodied energy’ (EE) bahan dan pelepasan karbon terutama menggunakan Penilaian Kitar Hayat (LCA) yang mengambil kira semua peringkat dalam kitaran hidup bangunan. Penggunaan LCA menyediakan alat untuk mengukur secara lengkap kesan-kesan bangunan terhadap alam sekitar dan secara tidak langsung menyumbang kepada langkah-langkah tebatan yang boleh digunakan dalam keseluruhan proses pembinaan bangunan dan bangunan kitaran hidup yang akan menyumbang kepada persekitaran alam bina dan berkesan. Oleh itu, kertas kerja ini akan membincangkan penggunaan LCA dalam sektor pembinaan untuk menentukan fasa dalam kitar hayat bangunan yang menggunakan lebih banyak tenaga dan melepaskan karbon secara berlebihan. Penggunaan LCA adalah sangat sesuai dalam menilai prestasi sesebuah bangunan di mana langkah-langkah tebatan yang berkesan dapat dikenal pasti untuk meningkatkan kecekapan dan membantu tenaga negara dan pemuliharaan sumber semula jadi.

Kata kunci: Pelepasan karbon; bangunan; semula jadi; penilaian kitaran kehidupan


Full Text:

PDF

References


Adalberth, K.1997a. Energy use during the life cycle of buildings: a method. Building and Environment 32(4): 317–320.

Adalberth, K. 1997b. Energy use during the life cycle of singleunit dwellings: Examples. Building and Environment 32(4): 321–329.

Arena, A. P. and De Rosa, C. 2003. Life cycle assessment of energy and environmental implications of the implementation of conservation technologies in school buildings in Mendoza—Argentina. Building and Environment 38: 359–368.

Asif, M., Muneer, T. and Kelley, R. 2007. Life cycle assessment: A case study of a dwelling home in Scotland, Building and Environment 42: 1391–1394.

Basbagill, J., Flager, F., Lepech, M. and Fischer, M. 2013. Application of life-cycle assessment to early stage building design for reduced embodied environmental impacts. Building and Environment 60: 81–92.

Blengini, G. A. and Di Carlo, T. 2010. The changing role of life cycle phases, subsystems and materials in the LCA of low energy buildings. Energy and Buildings 42: 869–880.

Buyle, M., Braet, J. and Audenaert, A. 2013. Life cycle assessment in the construction sector: A review. Renewable and Sustainable Energy Reviews 26: 379–388.

Cabeza, L. F., Barreneche, C., Miró, L., Morera, J. M., Bartolí, E. and Fernández, A. I. 2013. Low carbon and low embodied energy materials in buildings: A review. Renewable and Sustainable Energy Reviews 23: 536–542.

Chang, Y., Ries, R. J. and Lei, S. 2012. The embodied energy and emissions of a high-rise education building: A quantification using process-based hybrid life cycle inventory model. Energy and Buildings 55: 790–798.

Cole, R. J. and Kernan, P. C. 1996. Life-cycle energy use in office buildings, Building and Environment 31(4): 307–317.

Cucek, L., Klemes, J. J. and Kravanja, Z. 2012. A review of footprint analysis tools for monitoring impacts on sustainability. Journal of Cleaner Production 34: 9–20.

Cuéllar-Franca, R. M. and Azapagic, A. 2012. Environmental impacts of the UK residential sector: Life cycle assessment of houses. Building and Environment 54: 86–99.

Dakwale, V. A. and Ralegaonkar, R. V. 2012. Review of carbon emission through buildings: threats, causes and solution. International Journal of Low-Carbon Technologies 7:143–148.

Dias, W. P. S. and Pooliyadda, S. P. 2004. Quality based energy contents and carbon coefficients for building materials: A systems approach. Energy 29: 561–580.

Dimoudi, A. and Tompa, C. 2008. Energy and environmental indicators related to construction of office buildings. Resources, Conservation and Recycling 53: 86–95.

Dixit, M. K., Fernández-Solís, J. L., Lavy, S. and Culp, C. H. 2010. Identification of parameters for embodied energy measurement: A literature review. Energy and Buildings 42: 1238–1247.

Dixit, M. K., Fernández-Solís, J. L., Lavy, S. and Culp, C. H. 2012. Need for an embodied energy measurement protocol for buildings: A review paper. Renewable and Sustainable Energy Reviews 16: 3730–3743.

Feist, W., Schnieders, J., Dorer, V. and Haas, A. 2005. Reinventing air heating: convenient and comfortable within the frame of the passive house concept. Energy and Buildings 37: 1186–1203.

Hammond, G. and Jones, C. 2008. Inventory of carbon and energy. United Kingdom: University of Bath.

Hammond, G. P. and Jones, C. I. 2008. Embodied energy and carbon in construction materials. Proceedings of the Institution of Civil Engineers - Energy 161(2): 87–98.

Heinonen, J., Kyrö, R. and Junnila, S. 2011. Dense downtown living more carbon intense due to higher consumption: a case study of Helsinki. Environmental Research Letters 6: 034034.

IPCC. 2007. Fourth Assessment Report: Climate Change. Intergovernmental Report on Climate Change.

Iribarren, D. and Vázquez-Rowe, I. 2013. Is labor a suitable input in LCA + DEA studies? Insights on the combined use of economic, environmental and social parameters. Social Sciences 2:114–130.

Jeong, Y.-S., Lee, S.-E. and Huh, J.-H. 2012. Estimation of CO2 emission of apartment buildings due to major construction materials in the Republic of Korea. Energy and Buildings 49: 437–442.

Kofoworola, O. F. and Gheewala, S. H. 2009. Life cycle energy assessment of a typical office building in Thailand. Energy and Buildings 41(10): 1076–1083.

Kua, H. W. and Wong, C. L. 2012. Analysing the life cycle greenhouse gas emission and energy consumption of a multistoried commercial building in Singapore from an extended system boundary perspective. Energy and Buildings 51: 6–14.

Langston, Y. L. and Langston, C. A. 2008. Reliability of building embodied energy modeling: an analysis of 30 Melbourne case studies. Construction Management and Economics 26(2): 147–160.

Lee, S., Park, W. and Lee, H. 2013. Life cycle CO2 assessment method for concrete using CO2 balance and suggestion to decrease LCCO2 of concrete in South-Korean apartment. Energy and Buildings 58: 93–102.

Monahan, J. and Powell, J. C. 2011. An embodied carbon and energy analysis of modern methods of construction in housing: A case study using a lifecycle assessment framework. Energy and Buildings 43: 179–188.

Ortiz, O., Bonnet, C., Bruno, J. C. and Castells, F. 2009. Sustainability based on LCM of residential dwellings: A case study in Catalonia, Spain. Building and Environment 44: 584–594.

Ortiz, O., Castells, F. and Sonnemann, G. 2009. Sustainability in the construction industry: A review of recent developments based on LCA. Construction and Building Materials 23: 28–39.

Passell, H., Dhaliwal, H., Reno, M., Wu, B., Amotz, A. B., Ivry, E., Gay, M., Czartoski, T., Laurin, L. and Ayer, N. 2013. Algae biodiesel life cycle assessment using current commercial data. Journal of Environmental Management 129: 103–111.

Ramesh, T., Prakash, R. and Shukla, K. K. 2010. Life cycle energy analysis of buildings: An overview. Energy and Buildings 42: 1592–1600.

Ramesh, T., Prakash, R. and Shukla, K. K. 2012. Life cycle approach in evaluating energy performance of residential buildings in Indian context. Energy and Buildings 54: 259–265.

Ribera, G., Clarens, F., Martínez-Lladó, X., Jubany, I., Martí, V. and Rovira, M. 2014. Life cycle and human health risk assessments as tools for decision making in the design and implementation of nanofiltration in drinking water treatment plants. The Science of the Total Environment 466-467: 377–386.

Sharma, A., Saxena, A., Sethi, M. and Shree, V. 2011. Life cycle assessment of buildings: A review. Renewable and Sustainable Energy Reviews 15:871–875.

Suzuki, M. and Oka, T. 1998. Estimation of life cycle energy consumption and CO2 emission of office buildings in Japan. Energy and Buildings 28: 33–41.

Thiers, S. and Peuportier, B. 2012. Energy and environmental assessment of two high energy performance residential buildings. Building and Environment 51: 276–284.

Thorn, M. J., Kraus, J. L. and Parker, D. R. 2011. Life-cycle assessment as a sustainability management tool: strengths, weaknesses, and other considerations. Environmental Quality Management Spring: 1–10.

Treloar, G. J., Love, P. E. D. and Holt, G. D. 2001. Using national input-output data for embodied energy analysis of individual residential buildings. Construction Management and Economics 19: 49–61.

Weidema, B. P. 2006. The integration of economic and social aspects in life cycle impact assessment. International Journal of LCA 11(1): 89–96.

Williams, D., Elghali, L., Wheeler, R. and France, C. 2012. Climate change influence on building lifecycle greenhouse gas emissions: Case study of a UK mixed-use development. Energy and Buildings 48: 112–126.

You, F., Hu, D., Zhang, H., Guo, Z., Zhao, Y., Wang, B. and Yuan, Y. 2011. Carbon emissions in the life cycle of urban building system in China—A case study of residential buildings. Ecological Complexity 8: 201–212.

Zhang, X., Shen, L. and Zhang, L. 2013. Life cycle assessment of the air emissions during building construction process: A case study in Hong Kong. Renewable and Sustainable Energy Reviews 17: 160–169.

Zuo, J., Read, B., Pullen, S. and Shi, Q. 2012. Achieving carbon neutrality in commercial building developments-Perceptions of the construction industry. Habitat International 36: 278–286.


Refbacks

  • There are currently no refbacks.


 


ISSN 2289-1706 | e-ISSN : 2289-4268 

Institut Alam dan Tamadun Melayu (ATMA)
Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor Darul Ehsan
MALAYSIA

© Copyright UKM Press, Universiti Kebangsaan Malaysia