Spatial modelling of papaya dieback disease occurrence

Nurul Hawani Idris, Marliana Azman, Sazlieya Saupi Teri, Erneeza Mohd Hata, Mohamad Hafis Izran

Abstract


The incident of papaya dieback disease has resulted in huge losses due to the decrement in crop yield. The disease is affecting papaya production in Malaysia, putting papaya production at risk, primarily to accommodate the national and export trading needs. Abiotic factors have been identified as agents influencing the occurrence of papaya disease, however, little study includes the possible influence of landscape features on disease occurrence. Therefore, using a spatial model, this study aims to investigate the influence of weather variables and the surrounding landscape on papaya dieback disease in Batu Pahat district, Johor, Malaysia. This study applied an Ordinary Least Square (OLS) regression to identify the dominant abiotic factors influencing the papaya disease incident. The main finding revealed that the distance of disease incidents significantly influences the rate of papaya dieback disease based on the affected points (crop) to the nearby road; the percentage area of papaya dieback disease incidence was negatively related to the distance from the road. In other words, being closer to road features may increase the size of the affected area.  This research could benefit stakeholders in strategising agricultural practices including planning suitable landscape and topographic characteristics of newly planted areas to reduce the occurrence of such disease.

 

Keywords: Abiotic factors, ordinary least square, papaya dieback disease, spatial epidemiology, spatial model, tropical climate


Keywords


Abiotic factors, ordinary least square, papaya dieback disease, spatial epidemiology, spatial model, tropical climate

Full Text:

PDF

References


Amin, N. M., Bunawan, H., Redzuan, R. A., & Jaganath, I. B. S. (2010). Erwinia mallotivora sp., a new pathogen of papaya (Carica papaya) in Peninsular Malaysia. International Journal of Molecular Sciences, 12(1), 39-45. https://doi.org/10.3390/ijms12010039

Boshra, V., & Tajul, A. Y. (2013). Papaya – An innovative raw material for the food and pharmaceutical processing industry. Health and the Environment Journal, 4(1), 68-75.

Bunawan, H., & Baharum, S. N. (2015). Papaya dieback in Malaysia: A step towards a new insight of disease resistance. Iranian Journal of Biotechnology, 13(4), 1-2.

Chai, W., Jualang, A. G., Atong, M., Jugah, K., Poili, E., & Chong, K. (2017). First report of Erwinia psidii associated with papaya dieback disease in Malaysia. Malaysian Journal of Microbiology, 13(1), 20-25. https://doi.org/10.21161/mjm.89816

Chakraborty, S., & Newton, A. C. (2011). Climate change, plant diseases and food security: An overview. Plant Pathology, 60(1), 2-14. https://doi.org/10.1111/j.1365-3059.2010.02411.x

Department of Agriculture Terengganu (DOA Terengganu). (2019). Awas penyakit mati rosot betik (Papaya dieback). Retrieved from http://www.terengganu.gov.my/maxc2020/appshare/widget/mn_img/76682file/awas%20mati%20rosot%20betik.pdf

DOA. (2021) Statistik tanaman buah-buahan 2021. Accessed from http://www.doa.gov.my/index/resources/aktiviti_sumber/sumber_awam/maklumat_pertanian/perangkaan_tanaman/statistik_tanaman_buah_2021.pdf

Eng, L. (2011). Bacterial dieback of papaya trees. New Sunday Tribune. Retrieved from http://www.doa.sarawak.gov.my/modules/web/pages.php?mod=webpage⊂=page&i=245

ESRI. (2019a). How kernel density works. Retrieved from http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-kernel-density-works.html

ESRI. (2019b). How proximity tools calculate distance. Retrieved from http://desktop.arcgis.com/en/arcmap/latest/tools/analysis- toolbox/how-near-analysis-works.html

ESRI. (2019c). Interpreting OLS result. Retrieved from http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-statistics-toolbox/interpreting-ols-results.html

Gilligan, C. A. (2008). Sustainable agriculture and plant diseases: An epidemiological perspective. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1492), 741-759. https://doi.org/10.1098/rstb.2007.2181

Idris, N. H., Hata, E. M., Adnan, N., Saupi-Teri, S., Osman, M. J., Md Din, A. H., & Ishak, M. H. I. (2023). The influence of abiotic factors on the occurrence of jackfruit dieback disease. Pertanika Journal of Science & Technology, 31(5), 2487-2503. https://doi.org/10.47836/pjst.31.5.24

Jabatan Pertanian Negeri Pulau Pinang (JPNPP). (2019). Jabatan Pertanian Negeri Pulau Pinang -Keterangan Am: Betik. Retrieved from http://jpn.penang.gov.my/index.php/teknologi-tanaman-2/buah-buahan/33-betik

Lasin, S., Sijam, K., & Awang, Y. (2015). Occurrence and distribution of papaya dieback disease in Peninsular Malaysia. International Journal of Advanced Multidisciplinary Research, 2(7), 42-48.

Maktar, N. H., Kamis, S., Mohd Yusof, F. Z., & Hussain, M. H. (2008). Erwinia papayae causing papaya dieback in Malaysia. Plant Pathology, 57(4), 774–774. https://doi.org/10.1111/j.1365-3059.2008.01877.x

Mohd Khairil, J., & Muhammad Munzir, M. (2014). Experiences in managing bacterial dieback disease of papaya in Malaysia. Acta Hortic. 1022, 125-132. https://doi.org/10.17660/ActaHortic.2014.1022.16

Mora-Aguilera, G., Nieto-Angel, D., Campbell, C. L., Téliz, D., & García, E. (1996). Multivariate comparison of papaya ringspot epidemics. Phytopathology, 86(1), 70-78. https://doi.org/10.1094/Phyto-86-70

Mora-Aguilera, G., Nieto-Angel, D., Teliz, D., & Lee Campbell, C. (1993). Development of a prediction model for papaya ringspot in Veracruz, Mexico. Plant Disease, 77(12), 1205-1211. https://doi.org/10.1094/PD-77-1205

Plantegenest, M., Le May, C., & Fabre, F. (2007). Landscape epidemiology of plant diseases. Journal of the Royal Society Interface, 4(16), 963-972. https://doi.org/10.1098/rsif.2007.1114

Sabtu, M., Ishak, M.H.I and Idris, N.H. (2018). The role of geospatial in plant pests and diseases: an overview. IOP Conference Series: Earth and Environmental Science, Volume 169, 9th IGRSM International Conference and Exhibition on Geospatial & Remote Sensing (IGRSM 2018) 24–25 April 2018, Kuala Lumpur, Malaysia. Doi 10.1088/1755-1315/169/1/012013

Sabtu, M., Ishak, M.H.I and Idris, N.H. (2019). The Spatial Epidemiology of Jackfruit Pest and Diseases, A Review. International Journal of Built Environment and Sustainability, 6(1-2), 169–175. https://doi.org/10.11113/ijbes.v6.n1-2.395

Scholthof, K. B. G. (2007). The disease triangle: Pathogens, the environments and society. Nature Reviews Microbiology, 5(2), 152-156. https://doi.org/10.1038/nrmicro1596

Statstutor. (2019). Pearson’s correlation. Retrieved from http://www.statstutor.ac.uk/resources/uploaded/pearsons.pdf

Supian, S. (2015). Antioxidant-mediated defense response of Carica papaya L. Var. Eksotika against a compatible Erwinia mallotivora strain BT-MARDI (Thesis Master of Science, Universiti Putra Malaysia).

Tamburini, G., De Simone, S., Sigura, M., Boscutti, F., & Marini, L. (2016). Soil management shapes ecosystem service provision and trade-offs in agricultural landscapes. Proceedings of the Royal Society B: Biological Sciences, 283(1837), 20161369. https://doi.org/10.1098/rspb.2016.1369

Yamanludin, N. S. (2015). Physiology of Erwinia mallotivora-infected papaya seedlings (Carica papaya L.) treated with silicon (Thesis Master of Science, Universiti Putra Malaysia).


Refbacks

  • There are currently no refbacks.