Evaluation of coastal hydrodynamic performance using statistical analysis at the Kelantan coast, Malaysia

Nurul A'idah Abd Rahim, Khairul Nizam Abdul Maulud, Fazly Amri Mohd, Lee Hin Lee, Wan Hanna Melini Wan Mohtar

Abstract


Coastal zones are vulnerable to the effects of nature and man, as well as being physically volatile. The interaction of hydrodynamic conditions in coastal areas is a complex phenomenon. Considering the characteristics in this specific area, understanding its hydrodynamic behaviour should be obviously clarified. Thus, the hydrodynamic characteristics for Kelantan coast had been simulated using a numerical software of MIKE 21 Hydrodynamic FM. To assess the performance of the model, a combination of time series analysis and statistical evaluation were carried out against two weeks of observed data. Time series analysis shows a good agreement with the field measurements for both magnitude and phase. Statistical analysis using Root Mean Squared Errors (RMSE) and Regression analysis (R2) for current speed and water level were analysed. The results indicate that the RMSE for current speed are 8.97% and 8.00% for ADCP 1 and ADCP 2, respectively while the RMSE for water level is 8.89 %. Through the regression analysis, the output indicates that the numerical model is in a good performance as the R2 ranged from 0.72 to 0.9. Both time series and statistical approach were successfully utilised in the hydrodynamic model to determine the performance of the coastal hydrodynamic characteristics in Kelantan’s coastline. The output model can provide important information, especially on the coastal management and land-use planning for the developers, planners and state authority.

Keywords: Coastal, hydrodynamic, numerical modelling, regression analysis, RMSE


Keywords


Coastal; hydrodynamic; numerical modelling; regression analysis; RMSE

Full Text:

PDF

References


Ariffin, E. H., Zulfakar, M. S. Z., Redzuan, Nurul., Mathew, M., Akhir, M. F., Baharim, N., Awang, N. & Mokhtar, N. (2020). Evaluating the effects of beach nourishment on littoral morphodynamics at Kuala Nerus, Terengganu (Malaysia). Journal of Sustainability Science and Management, 15(5), 29–42.

Ariffin, E. H., (2018). Effect of monsoons on beach morphodynamics in the East Coast of Peninsular Malaysia: Examples from Kuala Terengganu coast. PhD Thesis, Universite de Bretagne-Sud.

Ariffin, E. H., Mathew, M. J., Yaacob, R., Akhir, M. F., Shaari, H., Zulfakar, M. S. Z., Sedrati, M. and Awang, N.A. (2018). Beach morphodynamic classification in different monsoon seasons at Terengganu beaches, Malaysia. Journal of Sustainability Science and Management, (5), 65–74.

Azad, W., Sidek, L., Basri, H., Fai, C., Saidin, S., & Hassan, A. (2016). 2 Dimensional Hydrodynamic Flood Routing Analysis on Flood Forecasting Modelling for Kelantan River Basin. MATEC Web of Conferences, 87 . doi: 10.1051/matecconf/201787010162016.

Azid, A., Noraini, C., Hasnam, C., Juahir, H., Amran, M. A., Toriman, M. E., Kamarudin, A. (2015). Coastal erosion measurement along Tanjung Lumpur to Cherok Paloh, Pahang during the northeast monsoon season. Journal Teknologi, 1, 27–34.

Blacka, M., Carley, J. T., Cox, R. J. & Miller, B. (2007). The current use of physical and numerical models for coastal applications. University of New South Wales Coastal Conference, 2007.

Borgersen, B. T. (2016). Numerical modelling of Arctic coastal hydrodynamics and sediment transport. Master Thesis, Norwegian University of Science and Technology.

Brown, M. E., & Kraus, N. C. (2007). Tips for developing bathymetry grids for coastal modeling system applications. Coastal and Hydraulics Laboratory Engineering Technical Note ERDC/CHL CHETN-IV-69. Vicksburg, Mississippi: U.S. Army Engineer Research and Development Center, 15p.

Chu, P.C., Qi, Y., Chen, Y. Mao, Q., & Shi, P. (2004). South China Sea wave charcteristics. Part-1: Validation of wavewatch-III using TOPEX/Poseidon data. Journal of Atmospheric and Oceanic Technology, 21(11), 1718-1733.

De Vos, M., Vichi, M., & Rautenbach, C. (2021) Simulating the coastal ocean circulation near the Cape Peninsula using a coupled numerical model. Journal of Marine Science and Engineering, 9(359). https://doi.org/10.3390/jmse9040359

Denmark Hydraulic Institute (DHI). (2011). MIKE 21 FLOW MODEL FM. User Guide. Danish Hydraulic Institute, 2011.

Denmark Hydraulic Institute (DHI). (2017). MIKE C-MAP. Danish Hydraulic Institute, 2017.

Department of Irrigation and Drainage. (2001). Guidelines for Preparation of Coastal Engineering Hydraulic Study and Impact Evaluation Malaysia, pp 1-30.

Ding, Y., Jia, Y., & Wang, S. S. Y. (2016). Numerical Modeling of morphological processes around coastal structures. In: Proceedings World Environmental and Water Resource Congress May 21-25 2006. Sponsored by the Environmental and Water Resources Institute of ASCE. 10-20. Omaha, Nebraska.

Dunstan A. P., Aslinda N. A., Ahmad T.A., Yannie A.B., Zulazman M.L., Ikmalzatul A., Nurul A’idah A.R., Amir Hamzah A.R., Shahdy I., Siti Salihah M.S. & Roslina A.R. (2019). Morphodynamic of Marudu Bay during North East Monsoon (NEM ). Journal Earth Science & Climate Change, 10(4),1-13.

Ehsan S., Begum, R. A., Nor, N. G. M. & Maulud, K. N. A. (2019). Current and potential impacts of sea level rise in the coastal areas of Malaysia. IOP Conference Series: Earth and Environmental Science, 228(1).

Fitri, A., Hashim, R. & Motamedi, S. (2017). Estimation and validation of nearshore current at the coast of Carey Island, Malysia. Science and Technology, 25(3), 1009–1018.

Gill, J. Ainee, A. M. Anwar, and S. Omar K. (2014). Towards the Implementation of Continuous Coastal Vulnerability Index in Malaysia: A Review. Journal Teknologi, 71(4), 1-10.

Haditiar, Y., Putri, M. R., Ismail, N., Muchlisin, Z. A., & Rizal, S. (2019) Numerical simulation of currents and volume transport in the Malacca Strait and part of South China Sea. Engineering Journal, 23(6), 129–43.

Han, G., Tian, F., Ma, C. & Chen, Ge. (2021). The geometry of mesoscale eddies in the South China Sea: characteristics and implications. International Journal of Digital Earth, 14(4), 464-479.

Jusoh, W. H. W., Tangang, F., Juneng, L., & Hamid, M. R. A. (2014). Numerical modeling of hydrodynamic in southwestern Johor, Malaysia. In AIP Conference Proceedings, 665, 665–670).

Kamarudin, M. K. A., Toriman, M. E., Abd Wahab, N., Rosli, H., Ata, F. M., & Mohd Faudzi, M. N. (2017). Sedimentation study on upstream reach of selected rivers in Pahang River Basin, Malaysia. International Journal on Advanced Science, Engineering and Information Technology, 7(1), 35.

Kavuncuoglu, H., Kavuncuoglu, E., Ilter, S. M., Benli, B., Sagdic, O. & Yalcin, H. (2018). Prediction of the antimicrobial activity of walnut ( Juglans regia L. ) kernel aqueous extracts using artificial neural network and multiple linear regression. Journal of Microbiological Methods. 148. 10.1016/j.mimet.2018.04.003.

Kulkarni, R. R. (2013). Numerical Modelling of Coastal Erosion using MIKE21. Master Thesis, Norwegian University of Science and Technology.

Maruti, S. F., S. Amerudin, W. H.W. Kadir, and Z. M. Yusof. (2018). A hydrodynamic modelling of proposed dams in reducing flood hazard in Kelantan catchment. IOP Conference Series: Earth and Environmental Science, 140(1), 1-8.

Mirzaei, A., Tangang, F., Juneng, L., Ahmad Mustapha, M., Husain, M. & Akhir, M. Fa. (2013). Wave climate simulation for southern region of the South China Sea. Ocean Dynamics, 63. 10.1007/s10236-013-0640-2.

Mohamed Rashidi, A.H., Jamal, M.H., Hassan, M.Z., Mohd Sendek, S.S., Mohd Sopie, S.L., & Abd Hamid, M.R. (2021). Coastal structures as beach erosion control and sea level rise adaptation in Malaysia: A review. Water (Switzerland), 13(13), 1–34.

Mohammad Noor, N., Rahaida Harun, S. N., Zainab, M. L., Mukai, Y., Najma, T. M., & S. S. (2013). Diversity of phytoplankton in coastal water of Kuantan, Pahang, Malaysia. Malaysian Journal of Sciences, 32(1), 29–37.

Mohd, F.A., Maulud, K.N.A., Begum, R.A., Selamat, S.N., & Karim, O.A. (2018). Impact of shoreline changes to Pahang coastal area by using geospatial technology. Sains Malaysiana, 47(5), 991–97.

Mohtar, W. H. M. W., Bassa, S. A., & Porhemmat, M. (2017). Grain size analysis of surface fluvial sediments in rivers in Kelantan, Malaysia. Sains Malaysiana, 46(5), 685–93.

Polagye, B. L., Epler, J. & Thomson, J. (2010). Limits to the predictability of tidal current energy. OCEANS 2010 MTS/IEEE SEATTLE. pp. 1-9, doi: 10.1109/OCEANS.2010.5664588.

Prasetyo, A., Yasuda, M., Miyashita, T. & Mori, N. (2018). Physical modeling and numerical analysis of tsunami inundation in a coastal city. Front. Built Environ., 5, 46. doi:10.3389/fbuil.2019.00046

Radzir, N. A. M., Ali, C. A. & Mohamed, K. R. (2018). Physical characteristics and distribution of bottom sediments from the kelantan river delta towards the south China Sea continental Shelf, Malaysia. Bulletin of the Geological Society of Malaysia, 66(66), 89–97. doi:10.7186/bgsm66201812.

Razak, M. S. A., Suryadi, F.X., Jamaluddin, N., & Nor, N. A. Z. M. (2018). Shoreline planform stability of embayed beaches along the Malaysian Peninsular coast. Journal of Coastal Research, 85, 631–35.

Reid, S. K., Tissot, P. E., & Williams, D. D. (2014). Methodology for applying GIS to evaluate hydrodynamic model performance in predicting coastal inundation. Journal of Coastal Research, 297, 1055–1065. doi:10.2112/jcoastres-d-13-00160.1

Samaras, A., Matteo, V., Renata, A., and Alberto, L. (2013). Wave and Hydrodynamics Modelling in Coastal Areas with TELEMAC and MIKE21. (July 2014): 14–19. http://vzb.baw.de/publikationen/vzb_dokumente_oeffentlich/0/tuc_2013_gesamt_rgb_111013.pdf.

Sawczyński, S., & Kaczmarek, L. M. (2014). Modeling Bathymetry Changes in the Coastal Zone – State of Knowledge Analysis. Technical Science, 17(3), 219–233.

Simon P. N., & Hashemi, M. R. (2018). Chapter 8 - Ocean Modelling for Resource Characterization. Fundamentals of Ocean Renewable Energy. Academic Press. Pages 193-235. ISBN. 9780128104484.https://doi.org/10.1016/B978-0-12-810448-4.00008-2.

Tam, T. H., Abd Rahman, M. Z., Harun, S., Hanapi, M. N., & Kaoje, I. U. (2019). Application of satellite rainfall products for flood inundation modelling in Kelantan River Basin, Malaysia. Hydrology, 6(4).

Tobergte., David, R., & Shirley, C. (2013). Hydrodynamic and Sediment transport modeling of deltaic sediment processes. Journal of Chemical Information and Modeling, 53(9), 1689–99.

Toriman, M. E., Hashim, N., Kamarudin, M. K., Hassan, A. J., Gasim, M. B., Muhamad, A., & Aziz, N. (2015). Penilaian kemasinan air menggunakan pemodelan model berangka hidronamik di muara sungai Selangor, Malaysia. The Malaysian Journal of Analytical Sciences, 19, 1109-1119.

Wan Ahmad, W. I. & Abdurrahman, S. M. (2015). Kelantan Flood 2014: Reflections from Relief Aid Mission to Kampung Kemubu, Kelantan. Mediterranean Journal of Social Sciences, (2015). 6(3), 340 – 344. Doi:10.5901/mjss.2015.v6n3s2p340

Williams J. J., & Esteves, L. S. (2017). Guidance on setup, calibration, and validation of hydrodynamic, wave, and sediment models for shelf seas and estuaries. Advances in Civil Engineering, 2017, 5251902. https://doi.org/10.1155/2017/5251902

Wyrtki, K., (1961). Physical oceanography of the Southeast Asian water. In NAGA Report Vol. 2, Scientific Result of Marine Investigation of the South China Sea and Gulf of Thailand 1959–1961, Scripps Institution of Oceanography, La Jolla, California, 195pp.

Zhang, H., Sannasiraj, S. A., & Chan, E. S. (2009). Wind wave effects on hydrodynamic modeling of ocean circulation in the South China Sea. The Open Civil Engineering Journal, 3(1), 48–61.

Zu, T., Gan, J. & Erofeeva, S. Y. (2008). Numerical study of the tide and tidal dynamics in the South China Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 55(2), 137–154.




DOI: http://dx.doi.org/10.17576/geo-2021-1704-27

Refbacks

  • There are currently no refbacks.