Water salinity variability mapping for flooded paddy plots at Kuala Kedah, Malaysia

Samera Samsuddin Sah, Khairul Nizam Abdul Maulud, Othman A. Karim, Suraya Sharil

Abstract


Salinity is an essential parameter in rice cultivation activity. It has a significant impact on paddy growth and also the yield of paddy. However, the level of salinity concentration in paddy plots depends on the surrounding conditions. The distance of the paddy area from the coastline, the temperature and intensity of rainfall should be considered in studies involving water quality. Additionally, the tide of events is also included in this study because of the position of the study area near the coastline. Therefore, this study was conducted to assess the level of salinity in two different rice cultivation seasons and describe the level of salinity concentration using a salinity variability map using the Inverse Distance Weighted (IDW) interpolation method. The data collection activities involved water sampling at 44 water inlets for each paddy plot in 30 hectares of the study area by referring to the Day After Sowing (DAS) as the paddy’s growth stage. These water samples were collected on 10 DAS, 40 DAS, and 60 DAS and subsequently tested using a portable conductivity meter namely EC500 Exstick II pH/Conductivity/Temperature Meter. Parallelly, georeference data which is latitude, longitude and elevation were gathered using Garmin GPSMAP 64s. Then, these data were analyzed using the IDW interpolation method in ArcGIS software and comes with salinity variability maps. The produced maps give an overview of the salinity concentration distribution by color scale range. Based on these salinity variability maps, the highest salinity concentration was recorded on 10 DAS and 60 DAS during Season 1 2019 and Season 2 2019, respectively for both tidal events. This result shows that the salinity concentration trend for both seasons is different due to the amount of rainfall received and the position of the paddy plot compared to the mean temperature factor.

Keywords: GIS, interpolation, oryza sativa, rice, saline water, seawater encroachment 


Keywords


GIS; interpolation; oryza sativa; rice; saline water; seawater encroachment

Full Text:

PDF

References


Abdul Maulud, K. N., Hasan, Z., & Karim, O. A. (2015). An accuracy of chart datum in the tidal observation period: Case study for Teluk Ewa, Pulau Langkawi. Jurnal Kejuruteraan, 27, 103–109.

Abdullah, H. H., Rak, A. E., & Wei, L. S. (2018). The impacts of monsoon and dry seasons on physical water quality changes and farmed Asian seabass Lates calcarifer (Bloch, 1790) mortality at Sri Tujuh lagoon, Tumpat, Kelantan, Malaysia. AACL Bioflux, 11(1), 167–183.

Abdullahi, M. G., Kamarudin, M. K. A., Umar, R., Endut, A., Khalit, S. I., & Juahir, H. (2017). Night sky brightness assessment in Nigeria using environmetric and GIS technique. International Journal on Advanced Science, Engineering and Information Technology, 7(1), 28–34. https://doi.org/10.18517/ijaseit.7.1.970

Achilleos, G. (2008). Errors within the inverse distance weighted (IDW) interpolation procedure. Geocarto International, 23(6), 429–449. https://doi.org/10.1080/10106040801966704

Ahmed, M. F., & Haider, M. Z. (2014). Impact of salinity on rice production in the south-west region of Bangladesh. Environmental Science, 9(4), 135–141. https://doi.org/10.4135/9781446247501.n1321

Bhunia, G. S., Shit, P. K., & Maiti, R. (2018). Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). Journal of the Saudi Society of Agricultural Sciences, 17(2), 114–126. https://doi.org/10.1016/j.jssas.2016.02.001

Bohluli, M., Sung, C. T. B., Hanif, A. H. M., & Rahman, Z. A. (2014). Silt pit efficiency in conserving soil water as simulated by HYDRUS 2D model. Pertanika Journal of Tropical Agricultural Science, 37(3), 321–330.

Che Omar, S., Shaharudin, A., & Tumin, S. A. (2019). The status of the paddy and rice industry in Malaysia. Kuala Lumpur: Khazanah Research Institute.

Dam, T. H. T., Amjath-Babu, T. S., Bellingrath-Kimura, S., & Zander, P. (2019). The impact of salinity on paddy production and possible varietal portfolio transition: a Vietnamese case study. Paddy and Water Environment, 17(4), 771–782. https://doi.org/10.1007/s10333-019-00756-9

Darmawan, A., Saputra, D. K., Wiadnya, D. G. R., & Gusmida, A. M. (2018). Prediction of supratidal zones as turtle nesting sites using remote sensing and geographic information system, a case study in Pacitan, Southern Java Sea. IOP Conference Series: Earth and Environmental Science, 137(1). https://doi.org/10.1088/1755-1315/137/1/012091

Department of Primary Industries and Regional Development. (2019). Water salinity and plant irrigation. Retrieved from https://www.agric.wa.gov.au/print/node/2977.

Ercan, A., Fauzi, M., & Kavvas, M. L. (2013). The impact of climate change on sea level rise at Peninsular Malaysia and Sabah-Sarawak. Hydrological Processes, 27(3)(January), 367–377. https://doi.org/10.1002/hyp.9232

Fatema, K., Omar, W., & Isa, M. (2016). Effects of tidal events on the water quality in the Merbok Estuary, Kedah, Malaysia. Journal of Environmental Science and Natural Resources, 8(2), 15–19. https://doi.org/10.3329/jesnr.v8i2.26858

Fogliatto, S., Serra, F., Patrucco, L., Milan, M., & Vidotto, F. (2019). Effect of different water salinity levels on the germination of imazamox-resistant and sensitive weedy rice and cultivated rice. Agronomy, 9(10). https://doi.org/10.3390/agronomy9100658

Geng, X., & Boufadel, M. C. (2017). The influence of evaporation and rainfall on supratidal groundwater dynamics and salinity structure in a sandy beach. Water Resources Research, 53, 6218–6238. https://doi.org/10.1002/ 2016WR020344

Gunarathna, M. H. J. P., Nirmanee, K. G. S., & Kumari, M. K. N. (2016). Are geostatistical interpolation methods better than deterministic interpolation methods in mapping salinity of groundwater? International Journal of Research and Innovations in Earth Sciences, 3(3), 59–64.

Hamzah, A. F., Abd Hamid, M. R., Mohamad, M. F., Mohd Shah, A., & Awang, N. A. (2018). Impact of sea level rise due to climate change: Case study of Klang and Kuala Langat Districts. International Journal of Engineering and Technology, 10(1), 59–64. https://doi.org/10.7763/ijet.2018.v10.1035

Hoang, T. M. L., Williams, B., Khanna, H., Dale, J., & Mundree, S. G. (2014). Physiological basis of salt stress tolerance in rice expressing the antiapoptotic gene SfIAP. Functional Plant Biology, 41(11), 1168–1177. https://doi.org/10.1071/FP13308

Jabatan Meteorologi Malaysia. (2019). Annual Report 2019. Kuala Lumpur: Jabatan Meteorologi Malaysia.

Kamarudin, M. K. A., Nalado, A. M., Toriman, M. E., Juahir, H., Umar, R., Ismail, A., … Harith, H. (2019). Evolution of river geomorphology to water quality impact using remote sensing and GIS technique. Desalination and Water Treatment, 149, 258–273. https://doi.org/10.5004/dwt.2019.23838

Kennedy, M., & Kopp, S. (2004). Understanding Map Projections GIS by ESRI. North, 110. Retrieved from https://gis.icao.int/icaoetod/map_projections[1].pdf

Khanom, T. (2016). Effect of salinity on food security in the context of interior coast of Bangladesh. Ocean and Coastal Management. https://doi.org/10.1016/j.ocecoaman.2016.06.013

Khong, T. D., Young, M. D., Loch, A., & Thennakoon, J. (2018). Mekong River Delta farm-household willingness to pay for salinity intrusion risk reduction. Agricultural Water Management, 200, 80–89. https://doi.org/10.1016/j.agwat.2017.12.010

Lian, J. J., Xu, K., & Ma, C. (2013). Joint impact of rainfall and tidal level on flood risk in a coastal city with a complex river network: A case study of Fuzhou City, China. Hydrology and Earth System Sciences, 17(2), 679–689. https://doi.org/10.5194/hess-17-679-2013

Liu, F., Zhang, H., Ming, J., Zheng, J., Tian, D., & Chen, D. (2020). Importance of precipitation on the upper ocean salinity response to Typhoon Kalmaegi (2014). Water, 12(614). https://doi.org/doi:10.3390/w12020614

Ma, N. L., Che Lah, W. A., Kadir, N. A., Mustaqim, M., Rahmat, Z., Ahmad, A., … Ismail, M. R. (2018). Susceptibility and tolerance of rice crop to salt threat: Physiological and metabolic inspections. PLoS ONE, 13(2), 1–17. https://doi.org/10.1371/journal.pone.0192732

Mccaffrey, S. (1997). Water quality parameters & indicator. Retrieved from https://sswm.info/sites/default/files/reference_attachments/MCCAFFREY%20ny%20Water%20Quality%20Parameters%20&%20Indicators.pdf.

Mirzaei, R., & Sakizadeh, M. (2016). Comparison of interpolation methods for the estimation of groundwater contamination in Andimeshk-Shush Plain, Southwest of Iran. Environmental Science and Pollution Research, 23(3), 2758–2769. https://doi.org/10.1007/s11356-015-5507-2

Munns, R., James, R. A., & Läuchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany. https://doi.org/10.1093/jxb/erj100

National Hydrographic Centre. (2019). Tide Tables Malaysia 2019. Royal Malaysian Navy, Port

Klang.

Osakabe, Y., Osakabe, K., Shinozaki, K., & Tran, L. S. P. (2014). Response of plants to water stress. Frontiers in Plant Science, 5(MAR), 1–8. https://doi.org/10.3389/fpls.2014.00086

Pattanagul, W., & Thitisaksakul, M. (2008). Effect of salinity stress on growth and carbohydrate metabolism in three rice (Oryza). Indian Journal of Experimental Biology, 46(October), 736–742.

Pirmoradian, N., Rezaei, M., Davatgar, N., Tajdari, K., & Abolpour, B. (2010). Comparing of interpolation methods in rice cultivation vulnerability mapping due to groundwater quality in Guilan, north of Iran. ICEEA 2010 - 2010 International Conference on Environmental Engineering and Applications, Proceedings, (Iceea), 147–150. https://doi.org/10.1109/ICEEA.2010.5596110

Purnaini, R., Sudarmadji, & Purwono, S. (2018). Tidal influence on water quality of Kapuas Kecil River downstream. E3S Web of Conferences, 31, 04006. https://doi.org/10.1051/e3sconf/20183104006

Rad, H. E., Aref, F., & Rezaei, M. (2012). Response of rice to different salinity levels during different growth stages. Research Journal of Applied Sciences, Engineering and Technology, 4(17), 3040–3047.

Radanielson, A. M., Gaydon, D. S., Li, T., Angeles, O., & Roth, C. H. (2018). Modeling salinity e ff ect on rice growth and grain yield with ORYZA v3 and APSIM-Oryza. 100(March), 44–55. https://doi.org/10.1016/j.eja.2018.01.015

Reddy, I. N. B. L., Kim, B. K., Yoon, I. S., Kim, K. H., & Kwon, T. R. (2017). Salt tolerance in rice: Focus on mechanisms and approaches. Rice Science, 24(3), 123–144. https://doi.org/10.1016/j.rsci.2016.09.004

Samsuddin Sah, S., Abdul Maulud, K. N., Sharil, S., A. Karim, O., & Abdul Nahar, N. F. (in press). Impact of saltwater intrusion on paddy growth in Kuala Kedah, Malaysia. Journal of Sustainability Science and Management. (accepted, 3 September 2020)

Sapna, K., Thangavelu, A., Mithran, S., & Shanthi, K. (2018). Spatial analysis of river water quality using Inverse Distance Weighted interpolation in Noyyal Watershed in Coimbatore, Tamilnadu, India. Research Journal of Life Sciences, Bioinformatics,Pharmaceuticals and Chemical Science, 4(1), 150–161. https://doi.org/10.26479/2018.0401.13

Shaha, D. C., Cho, Y. K., & Kim, T. W. (2013). Effects of river discharge and tide driven sea level variation on saltwater intrusion in sumjin river estuary: An application of finite-volume coastal ocean model. Journal of Coastal Research, 29(2), 460–470. https://doi.org/10.2112/JCOASTRES-D-12-00135.1

Smajgl, A., Toan, T. Q., Nhan, D. K., Ward, J., Trung, N. H., Tri, L. Q., … Vu, P. T. (2015). Responding to rising sea levels in the Mekong Delta. Nature Climate Change, 5, 167–174. https://doi.org/10.1038/nclimate2469

Takehisa, H., Shimodate, T., Fukuta, Y., Ueda, T., Yano, M., Yamaya, T., … Sato, T. (2004). Identification of quantitative trait loci for plant growth of rice in paddy field flooded with salt water. Field Crops Research, 89(1), 85–95. https://doi.org/10.1016/j.fcr.2004.01.026

Talpur, M. A., Ji, C., Junejo, S. A., Tagar, A. A., & Ram, B. K. (2013). Effect of different water depths on growth and yield of rice crop. African Journal of Agricultural Research, 8(37), 4654–4659. https://doi.org/10.5897/ajar12.1693

Tanjung, M., Syahreza, S., & Rusdi, M. (2020). Comparison of interpolation methods based on Geographic Information System (GIS) in the spatial distribution of seawater intrusion. Jurnal Natural, 20(2), 24–30. https://doi.org/10.24815/jn.v20i2.16440

Uncles, R. J., & Stephens, J. A. (2011). The Effects of wind , runoff and tides on salinity in a strongly tidal sub-estuary. Estuaries and Coasts, (34), 758–774. https://doi.org/10.1007/s12237-010-9365-3

Wahab, N. A., Amri Kamarudin, M. K., Toriman, M. E., Juahir, H., Md Saad, M. H., Ata, F. M., … Harith, H. (2019). Sedimentation and water quality deterioration problems at Terengganu River basin, Terengganu, Malaysia. Desalination and Water Treatment, 149, 228–241. https://doi.org/10.5004/dwt.2019.23836

Walsh, S., & Miskewitz, R. (2013). Impact of sea level rise on tide gate function. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 48(4), 453–463. https://doi.org/10.1080/10934529.2013.729924

Wan Mohtar, W. H. M., Abdul Maulud, K. N., Muhammad, N. S., Sharil, S., & Yaseen, Z. M. (2019). Spatial and temporal risk quotient based river assessment for water resources management. Environmental Pollution, 248, 133–144. https://doi.org/10.1016/j.envpol.2019.02.011

Wu, C. Y., Mossa, J., Mao, L., & Almulla, M. (2019). Comparison of different spatial interpolation methods for historical hydrographic data of the lowermost Mississippi River. Annals of GIS, 25(2), 133–151. https://doi.org/10.1080/19475683.2019.1588781

Wu, Y. H., Hung, M. C., & Patton, J. (2013). Assessment and visualization of spatial interpolation of soil pH values in farmland. Precision Agriculture, 14(6), 565–585. https://doi.org/10.1007/s11119-013-9316-7

Xiong, L. (2007). Abscisic acid in plant response and adaptation to drought and salt stress. In Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. https://doi.org/10.1007/978-1-4020-5578-2_9

Yan, S. F., Yu, S. E., Wu, Y. B., Pan, D. F., She, D. L., & Ji, J. (2015). Seasonal variations in groundwater level and salinity in coastal plain of Eastern China influenced by climate. Journal of Chemistry, 2015, 1-8. https://doi.org/10.1155/2015/905190

Yang, W., Zhao, Y., Wang, D., Wu, H., Lin, A., & He, L. (2020). Using principal components analysis and IDW interpolation to determine spatial and temporal changes of surface water quality of Xin’Anjiang river in Huangshan, China. International Journal of Environmental Research and Public Health, 17(8), 1–14. https://doi.org/10.3390/ijerph17082942

Yang, X., Xie, X., Liu, D. L., Ji, F., & Wang, L. (2015). Spatial interpolation of daily rainfall data for local climate impact assessment over Greater Sydney Region. Advances in Meteorology, 2015, 1-12. https://doi.org/10.1155/2015/563629

Yu, X., Zhan, C., Wu, M., Niu, X., Zhang, X., Wang, Q., & Cui, B. (2020). An improved method for mapping tidal waterways based on remotely sensed waterlines: A case study in the Yellow River Delta, China. Marine Georesources and Geotechnology, 38(8), 887–895. https://doi.org/10.1080/1064119X.2019.1640321

Zhang, J., Lin, Y., Zhu, L., Yu, S., Kundu, S. K., & Jin, Q. (2015). Effects of 1-methylcyclopropene on function of flag leaf and development of superior and inferior spikelets in rice cultivars differing in panicle types. Field Crops Research, 177(2015), 64-74. https://doi.org/10.1016/j.fcr.2015.03.003




DOI: http://dx.doi.org/10.17576/geo-2021-1704-17

Refbacks

  • There are currently no refbacks.