Impak perubahan iklim ke atas pertanian berdasarkan Model Simulasi Pertumbuhan Tanaman (CGS) (Impact of Climate Change on Agriculture Based on the Crop Growth Simulation (CGS) Model)

Radin Firdaus, Mohamad Shaharudin Samsurijan, Paramjit Singh Jamir Singh, Mohd Haizzan Yahaya, Abdul Rais Abdul Latiff, Kumarashwaran Vadevelu

Abstract


Sektor pertanian merupakan antara sektor ekonomi yang terawal yang mendapat tumpuan meluas dalam kajian-kajian berkaitan impak perubahan iklim. Hal ini didorong oleh kemudahterancaman sektor pertanian terhadap perubahan iklim selain kepentingan sektor ini dalam menjamin kelangsungan kehidupan manusia. Perbincangan berkaitan magnitud impak perubahan iklim ke atas sektor pertanian masih giat diperdebatkan sehingga ke hari ini. Sehingga kini, terdapat pelbagai kaedah dan model yang telah diaplikasikan bagi menilai impak perubahan iklim terhadap sektor pertanian di pelbagai negara. Antara model yang lazim digunakan oleh penyelidik ialah model simulasi pertumbuhan tanaman (CGS). Oleh yang demikian, matlamat kertas kerja ini adalah untuk meninjau impak perubahan iklim ke atas sektor pertanian di seluruh dunia melalui sorotan literatur kajian lepas yang telah menggunakan model CGS. Secara keseluruhan, tinjauan ini menyimpulkan bahawa tanaman pertanian antara negara di seluruh dunia menunjukkan sensitiviti iklim yang berbeza-beza. Impak perubahan iklim dijangka menjejaskan hasil pengeluaran pertanian di negara sedang membangun dan berpendapatan rendah, terutamanya di negara yang berada di iklim tropika atau di latitud yang rendah. Memandangkan terdapatnya kesan heterogen perubahan iklim ke atas sektor pertanian, oleh itu amat penting sekali bagi setiap pengkaji yang ingin mengkaji perhubungan antara iklim dan pertanian pada masa hadapan untuk memberi tumpuan terhadap aspek geografi iklim.


Keywords


hasil pengeluaran; impak; model; pertanian; perubahan iklim; simulasi pertumbuhan tanaman

Full Text:

PDF

References


Adams, R.M., Rosenzweig, C., Peart, R. M., Ritchie, J.T., McCarl, B.A., Glyer, J.D., Curry, R.B., Jones, J.W., Boote, K.J., & Allen Jr, J.H. (1990). Global climate change and U.S. agriculture. Nature, 345(6272), 219-224.

Alagarswamy, G., & Ritchie, J.T. (1991). Phasic development in CERES-Sorghum model. In. Hodges, T. (Eds.). Predicting Crop Phenology (pp. 143-152). Boca Raton, CRC Press.

Baker, C.H., & Harrocks, R.D. (1976). CORNMOD: A dynamic simulator of corn production. Agricultural Systems, 4, 57-77.

Baker, D.N., Lambert, J.R., & McKinion, J.M. (1983). GOSSYM: A simulator of cotton crop growth and yield. Technical Bulletin South Carolina Agricultural Experiment Station, No. 1089. South Carolina, Clemson University.

Bannayan, M., Mansoori, H., & Rezaei, E.E. (2014). Estimating climate change, CO2 and technology development effects on wheat yield in northeast Iran. International Journal of Biometeorolog, 58, 395-405.

Boote, K.J., Jones, J.W., Mishoe, J.W., & Wilkerson, G. G. (1986). Modeling growth and yield of groundnut. In. Sivakumar, M.V.K., Virmani, S.M., & Beckerman, S.R. (Eds.). Agrometeorology of Groundnut. Proceedings of an International Symposium, 21-26 August 1985, pp. 243-254.

Bourgeois, G. (1990). Evaluation of an alfalfa growth simulation model under Quebec conditions. Agricultural Systems, 32, 1-12.

Brisson, N., Mary, B., Ripoche, D. (1998). STICS: A generic model for the simulation of crops and their water and nitrogen balances. Theory and parameterization applied to wheat and corn. Agronomy for Sustainable Development, 18, 311-346.

Candradijaya, A., Kusmana, C., Syaukat, Y., Syaufina, L., & Faqih, A. (2014). Climate change impact on rice yield and adaptation response of local farmers in Sumedang District, West Java, Indonesia. International Journal of Ecosystem, 4(5), 212-223.

Challinor, A., Wheeler, T., Garforth, C., Craufurd, P., & Kassam, A. (2007). Assessing the vulnerability of food crop systems in Africa to climate change. Climatic Change, 83, 381-399.

Curry, R.B., Baker, C.H., & Streeter, J.G. (1975). SOYMOD I: A dynamic simulator of soybean growth and development. Transaction of the ASAE, 18, 963-968.

Denison, R.F., & Loomis, R.S. (1989). An integrative physiological model of alfalfa growth and development. Publication No. 1926. Oakland, Division Agricultural Natural Research, University of California.

Estes, L.D., Beukes, H., Bradley, B.A., Debats, S.R., Oppenheimer, M., Ruane, A.C., Schulze, R., & Tadross, M. (2013). Projected climate impacts to South African maize and wheat production in 2055: A comparison of empirical and mechanistic modeling approaches. Global Change Biology, 19(12), 3762-3774.

Gérardeaux, E., Sultan, B., Palaï, O., Guiziou, C., Oettli, P., & Naudin, K. (2013). Positive effect of climate change on cotton in 2050 by CO2 enrichment and conservation agriculture in Cameroon. Agronomy for Sustainable Development, 33(3), 485-495.

Hertel, T.W., & Rosch, S.D. (2010). Climate change, agriculture, and poverty. Applied Economic Perspectives and Policy, 32, 355-385.

Hoogenboom, G., White, J.W., Jones, J. W., & Boote, K.J. (1991). BEANGRO V1.01: Dry bean crop growth simulation model: User's guide. Florida Agricultural Experiment Station Journal No. N-00379. Florida, University of Florida.

Horie, T., Nakagawa, H., Centeno, H.G.S., & Kropff, M.J. (1995). The rice crop simulation model SIMRIW and its testing. In. Matthews, R.B., Kropff, M.J. & Bachelet, D. (Eds.). Modeling the Impact of Climate Change on Rice Production in Asia (pp. 51-66). Wallingford, CAB International.

Iglesias, A. (2006). Climate change and agriculture. CGE Hands-on Training Workshop on V&A Assessment of the Asia and the Pacific Region. Jakarta, 20-24 Mac.

Iizumi, T., Yokozawa, M., & Nishimori, M. (2011). Probabilistic evaluation of climate change impacts on paddy rice productivity in Japan. Climatic Change, 107, 391-415.

Jones, C.A., & Kiniry, J.R. (1986). CERES-Maize: A Simulation Model of Maize Growth and Development. Texas, A&M University Press.

Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A., Wilkens, P.W., Singh, U., Gijsman, A.J., & Ritchie J.T. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18, 235-265.

Justino, F., Oliveira, E.C., & Rodrigues, R.D.A. (2013). Mean and interannual variability of maize and soybean in Brazil under global warming conditions. American Journal of Climate Change, 2, 237-253.

Kaufmann, R.K., & Snell, S.E. (1997). A biophysical model of corn yield: Integrating climatic and social determinants. American Journal of Agriculture Economics, 79(1), 178-190.

Kim, H-Y., Ko, J., Kang, S., & Tenhunen, J. (2013). Impacts of climate change on paddy rice yield in a temperate climate. Global Change Biology, 19, 548-562.

Kropff, M.J., van Laar, H.H., Matthews, R.B., Goudriaan, J., & Ten Berge, H.F.M. (1994). Description of the model ORYZA1. In. Kropff, M.J., van Laar, H.H., & Matthews, R.B. (Eds.). ORYZA1: An Ecophysiological model for irrigated rice production. SARP Research Proceedings (pp. 5-41).

Kurukulasuriya, P., & Rosenthal, S. (2003). Climate change and agriculture: A review of impacts and adaptations. Climate Change Series Paper 91. Washington D.C, Environmental Department, World Bank.

Lambert, J.R., & Reicosky, D.C. (1984). Dynamics of water in Zea mays L.: Sensitivity analysis of TROIKA. Transactions of the ASAE, 27, 117-124.

Liu, J., Williams, J.R., Zehnder, A.J.B., & Yang, H. (2007). GEPIC: Modelling wheat yield and crop water productivity with high resolution on a global scale. Agricultural Systems, 94, 478-493.

Lobell, D.B., & Asseng, S. (2017). Comparing estimates of climate change impacts from process-based and statistical crop models. Environmental Research Letters, 12, 1-12.

Lobell, D.B., & Burke, M.B. (pnyt.). (2009). Climate change and food Security: Adapting agriculture to a warmer world. Advances in Global Change Research, 37. New York, Springer.

Maas, S.J., & Arkin, G.F. (1980). TAMW: A wheat growth and development simulation model. Research Center Program and Model Documentation No. 80-3. Texas, Texas Agricultural Experiment Station.

Maas, S.J., & Arkin, G.F. (1978). User Guide to SORFG: A dynamic grain sorghum growth model with feedback capacity. Research Center Program and Model Documentation No. 78-1. Texas, Texas Agricultural Experiment Station.

MacCarthy, D.S., & Vlek, P.L.G. (2012). Impact of climate change on sorghum production under different nutrient and crop residue management in semi-arid region of Ghana: A modeling perspective. African Crop Science Journal, 20(2), 243-259.

Maharjan, K.L., & Joshi, N.P. (2013). Climate change, agriculture and rural livelihoods in developing countries. Advances in Asian Human-Environmental Research. London, Springer.

McCown, R.L., Hammer, G.L., Hargreaves, J.N.G., Holzworth, D.P., & Freebairn, D.M. (1996). APSIM: A novel software system for model development, model testing and simulation in agricultural systems research. Agricultural Systems, 50, 255-271.

McMennamy, J.A., & O'Toole, J.C. (1983). RICEMOD: A physiologically based rice growth and yield model. IRRI Research Paper 87. Los Baños: International Rice Research Institute.

Mendelsohn, R. (2000). Measuring the effect of climate change on developing country agriculture. In. FAO (Eds.). Two essays on climate change and agriculture: A developing country perspective (pp. 1-28). FAO Economic and Social Development Paper 145. Rome, FAO.

Monteith, J.L., Huda, A.K.S., & Midya, D. (1989). RESCAP: A resource capture model for sorghum and pearl millet. In. Virmani, S.M., Tandon, H.L.S., & Alagarswarmy, G. (Eds.). Modeling the growth and development of sorghum and pearl millet (pp. 30-34). Research Bulletin No. 12. Andhra Pradesh, International Crops Research Institute for the Semi-Arid Tropics.

Nelson, G.C., van der Mensbrugghe, D., & Ahammad, H. (2014). Agriculture and climate change in global scenarios: Why don’t the models agree. Agricultural Economics, 45(1), 85-101.

Noorazuan Md Hashim. (2015). Kecelaruan iklim global: Satu analisis awal. Geografia Malaysian Journal of Society and Space, 11(11), 24-35.

Oort, P.A.J., & Zwart, S.J. (2018). Impacts of climate change on rice production in Africa andcauses of simulated yield change. Global Change Biology, 24, 1029-1045.

Ortiz-Bobea, A., & Just, R.E. (2013). Modeling the structure of adaptation in climate change impact assessment. American Journal of Agriculture Economics, 95(2), 244-251.

Otter-Nacke, S.J., Ritchie, J.T., Godwin, D., & Singh, U. (1991). A user’s guide to ceres barley-V2.10. Alabama, International Fertilizer Development Centre.

Özdoğan, M. (2011). Modeling the impacts of climate change on wheat yields in Northwestern Turkey. Agriculture, Ecosystems and Environment, 141, 1-12.

Piarra-Singh., Nedumaran, S., Traore, P.C.S., Boote, K.J., Rattunde, H.F.W., Prasad, P.V., Singh, N.P., Srinivas, K., & Bantilan, M.C.S. (2014). Quantifying potential benefits of drought and heat tolerance in rainy season sorghum for adapting to climate change. Agricultural and Forest Meteorology, 185, 37-48.

Rezaei, E.E., Gaiser, T., Siebert, S., Sultan, B., & Ewerta, F. (2014). Combined impacts of climate and nutrient fertilization on yields of pearl millet in Niger. European Journal of Agronomy, 55, 77-88.

Ritchie, J.T., & Alagarswamy, G. (1989). Simulation of sorghum and pearl millet phenology. In. Virmani, S.M., Tandon, H.L.S., & Alagarswamy, G. (Eds.). Modeling the growth and development of sorghum and pearl millet (pp. 24-26). Research Bulletin No. 12. Andhra Pradesh, ICRISAT.

Ritchie, J.T., Alocilja, E.C., Singh, U., & Uehara, G. (1987). IBSNAT and the CERES-rice model. In. IRRI (Eds.). Weather and Rice. Proceedings of the International Workshop on the Impact of Weather Parameters on Growth and Yield of Rice, 7-10 April 1986, (pp. 271-281).

Ritchie, J.T., Griffin, T.S., & Johnson, B.S. (1995). SUBSTOR: Functional model of potato growth, development, and yield. In. Kabat, B., Marshall, B. J., van den Broek, J.V., & van Keulen, H. (Eds.). Modelling and Parameterization of the Soil–Plant–Atmosphere System: A Comparison of Potato Growth Models (pp. 401-434). Wageningen, Wageningen Press.

Ritchie, J.T., & Otter, S. (1985). Description and performance of CERES-wheat: A user-oriented wheat yield mode. In. Wilis, W.O. (Eds.). ARS Wheat Yield Project, 38, 159-175. Washington D.C, Agricultural Research Service, USDA.

Rosenzweig, C. (1989). Potential effects of climate change on agricultural production. In. Smith, J.B., & Tripak, D. (Eds.). The Potential Effects of Global Climate Change on the United States. Washington D.C, U.S Environmental Protection Agency, Office of Policy, Planning and Evaluation.

Rosenzweig, C., Elliott, J., & Deryng, D. et al. (2014). Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences of the United States of America, 111(9), 3268-3273.

Roudier, P., Sultan, B., Quirion, P., & Berg, A. (2011). The impact of future climate change on West African crop yields: What does the recent literature say? Global Environmental Change, 21, 1073-1083.

Ruane, A.C., Mcdermid, S., Rosenzweig, C., Baigorria, G.A., Jones, J.W., Romero, C.C., & Cecil, L.D. (2014). Carbon–Temperature–Water change analysis for peanut production under climate change: A prototype for the AgMIP Coordinated Climate-Crop Modeling Project (C3MP). Global Change Biology, 20, 394-407.

Ruane, A.C., Cecil, L.D., Horton, R.M., Gordón, R., McCollum, R., Brown, D., Killough, B., Goldberg, R., Greeley A.P., & Rosenzweig, C. (2013). Climate change impact uncertainties for maize in Panama: Farm information, climate projections, and yield sensitivities. Agricultural and Forest, 170, 132-145.

Ruget, F., Abdessemed, A., & Moreau J.C. (2008). Impact of global climate change scenarios on alfalfa production in France. Grassland Science in Europe, 13, 745-747.

Sanabria, J., & Lhomme, J.P. (2013). Climate change and potato cropping in the Peruvian Altiplano. Theoretical and Applied Climatology, 112, 683-695.

Schlenker, W. & Roberts, M.J. (2006). Nonlinear effects of weather on corn yields. Review of Agricultural Economics, 28(3), 391-398.

Schlenker, W., & Roberts, M.J. (2009). Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proceedings of the National Academy of Sciences of the United States of America, 106(37), 15594-15598.

Sharpley, A.N. & Williams, J.R. (1990). EPIC – Erosion/Productivity Impact Calculator: 1. Model Documentation. Technical Bulletin No. 1768. Washington D.C, Agricultural Research Service, USDA.

Shrestha, S., Deb, T., & Bui, T.T.T. (2016). Adaptation strategies for rice cultivation under climate change in Central Vietnam. Mitigation and Adaptation Strategies for Global Change, 21, 15-37.

Shrestha, S., Chapagain, R., & Babel, M.S. (2017). Quantifying the impact of climate change on crop yield and water footprint of rice in the Nam Oon Irrigation Project, Thailand. Science of the Total Environment, 599-600, 689-699.

Stapper, M., & Arkin, G.F. (1980). CORNF: A dynamic growth and development model for maize (Zea mays L.). Research Center Program and Model Documentation No. 80-2. Texas, Texas Agricultural Experiment Station.

Tao, F., & Zhang, Z. (2011). Impacts of climate change as a function of global mean temperature: maize productivity and water use in China. Climatic Change, 105, 409-432.

Thornton, P.K., Jones, P.G., Alagarswamy, G., Andresen, J., & Herrero, M. (2010). Adapting to climate change: Agricultural system and household impacts in East Africa. Agricultural Systems, 103, 73-82.

Tuttolomondo, T., La Bella, S., Lecardane, G., & Leto, C. (2009). Simulation of the effects of climate change on barley yields in rural Italy. Second Meeting on Statistics on Rural Development and Agriculture Household Income, 11-12 Jun. Rome, FAO.

Vaghefi, N., Mad Nasir Shamsudin, Mokmom, A., & Bagheri, M. (2011). The economic impacts of climate change on the rice production in Malaysia. International Journal of Agricultural Research, 6(1), 67-74.

Ward, P.S., Florax, R.J.G.M., & Flores-Lagunes, A. (2014). Climate change and agricultural productivity in Sub-Saharan Africa: A spatial sample selection model. European Review of Agricultural Economics, 41(2), 199-226.

Wenjiao, S.H.I, Fulu, T., & Zhao, Z. (2013). A review on statistical models for identifying climate contributions to crop yields. Journal of Geographical Sciences, 3(3), 567-576.

Wilkerson, G.G., Jones, J.W., Boote, K.J., Ingram, K.T., & Mishoe, J.W. (1983). Modeling soybean growth for crop management. Transactions of the ASAE, 26, 63-73.

Williams, J.R., Jones, C.A., Kiniry, J.R., & Spanel, D.A. (1989). The EPIC crop growth model. Transactions of the ASAE, 32, 497-511.


Refbacks

  • There are currently no refbacks.