THE EFFECT OF ELEVATED CO2 ON LIFE CYCLE OF Tenebrio molitor L. (COLEOPTERA: TENEBRIONIDAE)

Nur Hasyimah Ramli, Hakan Bozdoğan, Salmah Yaakop

Abstract


Tenebrio molitor L. (Coleoptera: Tenebrionidae) is a major pest of storage products and popularly used as a model species in biological research. This research is crucial in demonstrating the effects of increased CO2 in the environment. The objective of this study was to determine the effect of life cycle of T. molitor (F1) at two significance systems of CO2 namely Free Air CO2 Enrichment System (FACE) and Open Roof Ventilation Greenhouse System (ORVS). Each stage of T. molitor from 10 transparent plastic containers was observed every 2 days and recorded. Prolonged of complete life cycle on the T. molitor in ORVS (147-172days) observed with 43% delayed compared to FACE (71-84 days) and rearing room as control (RR) (77-105 days). The extension was due to prolong of larval to pupal development in ORVS (141-154 days), however, only 77-84 days in RR and FACE (71-84 days). The description of morphological changes in all stages and its coloration also recorded. This preliminary findings are important in predicting the T. molitor survivability due to climate variability and in strategizing the Integrated Pest Management (IPM) in the warehouses of storage products.


Full Text:

PDF

References


Adamski, Z., Bufo, S. A., Chowański, S., Falabella, P., Lubawy, J., Marciniak, P., Pacholska, B.J., Salvia, R., Scrano, L., Słocińska, M., Spochacz, M., Szymczak, M., Urbański, A., Walkowiak-Nowicka, K., & Rosiński, G. (2019). Beetles as model organisms in physiological, biomedical and environmental studies - A review. Frontiers in Physiology 10(3): 1–22.

Ainsworth, E.A. & Long, S.P. 2005. What have we learned from 15 years of Free Air CO2 Enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist 165: 351–372.

Albright, L., Both, A.J. & Chiu, A.J. 2000. Controlling greenhouse light to a consistent daily integral. Transactions of the ASAE 43(2): 421–431.

Boggs, C.L. 2009. Understanding insect life histories and senescence through a resource allocation lens. Functional Ecology 2: 27–37.

Boulard, T. & Draoui, B. 1995. Natural ventilation of a greenhouse with continous roof vents: measurements and data analysis. Journal of Agricultural Engineering Research 61: 27–36.

Brooks, M.A. 1957. Growth-retarding effect of carbon-dioxide anaesthesia on the German cockroach. Journal of Insect Physiology 1: 76–84.

Connat, J.L., Delbecque, J.P., Glitho, I. & Delachambre, J. 1991. The onset of metamorphosis in Tenebrio molitor larvae (Insecta, Coleoptera) under grouped, isolated and starved conditions. Journal of Insect Physiology 37: 653–662.

Conner, J. 1988. Field Measurements of natural and sexual selection in the Fungus Beetle, Bolitotherus cornutus. Evolution 42: 736–749.

Cornelissen, T. 2011. Climate change and its effects on terrestrial insects and herbivory patterns. Neotropical Entomology 40: 155–163.

Garcia, M., Sosa, M.E., Donadel, O.J., Giordano, O.S. & Tonn, C.E. 2003. Effects of some sesquiterpenes on the stored-product insect Tenebrio molitor (Coleoptera: Tenebrionidae). Revista De la Sociedad Entomologica Argentina 62: 1726.

Ghaly, A.E. & Alkoaik, F.N. 2009. The yellow mealworm as a novel source of protein. American Journal of Agricultural and Biological Sciences 4: 319–331.

Goverde, M. & Erhardt, A. 2003. Effects of elevated CO2 on development and larval food-plant preference in the butterfly Coenonympha pamphilus (Lepidoptera: Satyridae). Global Change Biology 9: 74–83.

Guerenstein, P.G. & Hildebrand, J.G. 2008. Roles and effects of environmental carbon dioxide in insect life. Annual review of Entomology 53: 161–178.

Harmanto, Tantau, H.J. & Salokhe, V.M. 2006. Influence of insect screens with different mesh sizes on ventilation rate and microclimate of greenhouses in the humid tropics. International Journal of Agricultural Engineering 8: 1–18.

Heinrich, E.C., Farzin, M., Klok, C.J. & Harrison, J.F. 2011. The effect of developmental stage on the sensitivity of cell and body size to hypoxia in Drosophila melanogaster. Journal of Experimental Biology 214: 1419-1427.

Hill, D.S. 2002. Pests of Stored Foodstuffs and Their Control. Netherlands: Kluwer Academic Publishers.

Karowe, D.N. 2007. Are legume-feeding herbivores buffered against direct effects of elevated carbon dioxide on host plants? a test with the sulfur butterfly, Colias philodice. Global Change Biology 13: 2045–2051.

Kim, S.Y., Park, J.B., Lee, J.B., Yoon, H.J., Lee, K.Y. & Jim, N.J. 2015. Growth characteristics of mealworm Tenebrio molitor. Journal Sericultural Entomological Science 53(1): 1–5.

Klok, C.J., Sinclair, B.J. & Chown, S.L. 2004. Upper thermal tolerance and oxygen limitation in terrestrial arthropods. Journal of Experimental Biology 207: 2361-2370.

Machacova, T. 2010. Open top chamber and Free Air CO2 Enrichment - approaches to investigate tree responses to elevated CO2. Iforest 3: 102–105.

Miglietta, F., Peressotti, A., Vaccari, F.P., Zaldei, A., De Angelis, P. & Scarascia‐Mugnozza, G. 2001. Free Air CO2 Enrichment (FACE) of a poplar plantation: The POPFACE fumigation system. New Phytologist 150(2): 465–47.

Morales-Ramos, J.A. & Rojas, M.G. 2018. Effect of larval density on food utilization efficiency of Tenebrio molitor (Coleoptera: Tenebrionidae). Ecology and Behavior 108: 2259–2267.

Morales-Ramos, J.A., Rojas, M.G., Shapiro-Ilan, D.I. & Tedders, W.L. 2010. Developmental plasticity in Tenebrio molitor (Coleoptera: Tenebrionidae): analysis of instar variation in number and development time under different diets. Journal of Entomological Science 45: 75–90.

Nor Atikah, A.R., Halim, M., Nur Hasyimah, R. & Yaakop, S. 2020. Evaluation of Colour Changes, Survival Rate and Life Span of the Confused Sap Beetle (Carpophilus mutilatus) (Coleoptera: Nitidulidae) in Different Concentrations of Carbon Dioxide (CO2). Applied Ecology and Environmental Research 18(5): 6443-6455.

Nur Hasyimah, R. 2019. Kesan peningkatan kepekatan karbon dioksida (CO2) ke atas morfologi, biologi dan genetik Tenebrio molitor. PhD Thesis, Universiti Kebangsaan Malaysia.

Nur Hasyimah, R., Nor Atikah, A.R. & Yaakop, S. 2018a. The significance of free air CO2 enrichment and open roof ventilation greenhouse systems in a study of mealworm beetle, (Coleoptera: Tenebrionidae). Serangga 23(2):122-129.

Nur Hasyimah, R., Nor Atikah, A.R., Halim, M., Muhaimin, A.M.D., Nizam, M.S., Hanafiah, M.M. & Yaakop, S. 2018b. CO2 effects on larval development and genetics of mealworm beetle, Tenebrio molitor L. (Coleoptera: Tenebrionidae) in two different CO2 systems. Applied Ecology and Environmental Research 16(2): 1749–176.

Park, J.B. Choi, W.H., Kim, S.H., Jin, H.J., Han, Y.S., Lee, Y.S. & Kim, N.J. 2014. Developmental characteristics of Tenebrio molitor larvae (Coleoptera: Tenebrionidae) in different instars. International Journal of Industrial Entomology 28: 5–9.

Rao, M.S., Srinivas, K., Vanaja, M., Manimanjari, D., Rao, C.A.R. & Venkateswarlu, B. 2013. Response of multiple generations of semilooper, Achaea janata feeding on castor to elevated CO2. Journal of Environmental Biology 34: 747–754.

Quennedey, A. & Quennedey, B. 1993. The precocious commitment of wing anlagen in Tenebrio molitor revealed by the addition of 20-hydroxyecdysone. Tissue and Cell 25(2): 219-236.

Sanchez-Guerrero, M.C., Lorenzo, P., Medrano, E., Castilla, N., Soriano, T. & Baille, A. 2005. Effect of variable CO2 enrichment on greenhouse production in mild winter climates. Agricultural and Forest Meteorology 132: 244–252.

Siemianowska, E., Kosewska, A., Aljewicz, M., Skibniewska, K.A., Polak-Juszczak, A., Jarocki, A. & Jędras, M. 2013. Larvae of mealworm (Tenebrio molitor L.) as European novel food. Agricultural Science 4(6): 287–291.

Simon, E., Baranyai, E., Braun, M., Fábián, I. & Tóthmérész, B. 2013. Elemental concentration in mealworm beetle (Tenebrio molitor L.) during metamorphosis. Biological Trace Element Research 154: 81–87.

Singh, P. 1982. The rearing of beneficial insects. New Zealand Entomologist 7(3): 304–310.

Smith, M.A., Fernandez-Triana, J. L., Eveleigh, E., Gomez, J., Guclu, C., Hallwachs, W., Hebert, P.D.N., Hrcek, J., Huber, J.T., Janzen, D., Mason, P.G., Miller, S., Quicke, D.L. J., Rodriguez, J.J., Rougerie, R., Shaw, M.R., Varkonyi, G., Ward, D.F., Whitfield, J.B. & Zaldivar-Riveron, A. 2013. DNA barcoding and the taxonomy of Microgastrinae wasps (Hymenoptera, Braconidae): Impacts after 8 years and nearly 20000 sequences. Molecular Ecology Resources 13: 168-176.

Syarifah Zulaikha, S. A., Halim, M., Nor Atikah A.R. & Yaakop, S. 2018. Diversity and abundance of storage pest in rice warehouses in Klang, Selangor, Malaysia. Serangga, 23 (1): 89-98.

Taylor, C.J., Young, P.C., Chotai, A., Mcleod, A. & Glasock, A.R. 2000. Modelling and control design for Free Air Carbon Dioxide Enrichment (FACE) Systems. Journal of Agricultural and Engineering Research 75: 365–374.

USDA. 2016. Stored Grain Insect Reference. Washington: United States Department of Agriculture.

Zanuncio, J.C., Pereira, F.F., Jacques, G.C., Tavares, M.T. & Serrão, J.E. 2008. Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae), a new alternative host to rear the pupae parasitoid Palmistichus elaeisis Delvare and LaSalle (Hymenoptera: Eulophidae). The Coleopterists Bulletin 62(1): 62–66.

Zeuss, D., Brandl, R., Brändle, M., Rahbek, C. & Brunzel, S. 2014. Global warming favours light-coloured insects in Europe. Nature Communications 5: 3874.


Refbacks

  • There are currently no refbacks.