ASSESSMENT OF AMMONIUM-BASED SOLUTIONS (ABS) AS Aedes aegypti OVIPOSITION ATTRACTANT

Mohd Farihan Md Yatim, Ahmad Mohiddin Mohd Ngesom, Faizul Akmal Abdul Rahim, Mohd Amierul Fikri Mahmud, As'malia Md Lasim, Aishah Hani Azil

Abstract


Aedes aegypti exhibit a higher preference for ovipositing their eggs in water that possess with dissolved mineral and nutrient for the survival of their progeny. These solutions usually contain ammonia which was formed due to decomposing process of decaying organic matter in the water. Therefore, the understanding of oviposition preferences is crucial for developing effective strategies in vector control programme. The attractiveness of aqueous ammonia, ammonium nitrate and a mixture of ammonium and acid lactic to gravid Ae. aegypti were accessed through dual and multiple choice bioassays under laboratory conditions. In dual and multiple choice bioassays, female mosquitoes was highly tend to oviposit their eggs in the mixture of ammonium and acid lactic solution (152.87±11.06) compared to the ammonium nitrate (134.13±10.32)) and ammonium aqueos (141.60±11.93). Solution of ammonium nitrate was less effective to attract gravid Aedes in dual bioassays’ studies (P>0.05). This finding indicates that the combination of ammonium and acid lactic could be used in ovitrap surveillance programme. However, further research on combination of ammonium and acid lactic is warranted to find a better oviposition attractant for Ae. aegypti.


Full Text:

PDF

References


Ahmad-Azri, M., Syamsa, R.A., Ahmad-Firdaus, M.S. & Aishah-Hani, A. 2019. A comparison of different types of ovitraps for outdoor monitoring of Aedes mosquitoes in Kuala Lumpur. Tropical Biomedicine 36(2): 335-347.

Albeny-Simoes, D., Murrell, E.G., Elliot, S.L., Andrade, M.R., Lima, E., Juliano, S.A. & Vilela, E.F. 2014. Attracted to the enemy: Aedes aegypti prefers oviposition sites with predator-killed conspesifics. Oecologia 175(2): 481-492.

Arbaoui, A.A. & Chua, T.H. 2014. Bacteria as a source of oviposition attractant for Aedes aegypti mosquitoes. Tropical Biomedicine 31(1): 134-142.

Aris, T. 2019. Prolonged dengue outbreak at a high-rise apartment in Petaling Jaya, Selangor, Malaysia: A case study. Tropical Biomedicine 36(2): 550-558.

Brady, O.J. Gething, P.W., Bhatt, S., Messina, J.P., Brownstein, J.S., Hoen, A.G., Moyes, C.L., Farlow, A.W., Scott, T.W. & Hay, S.I. 2012. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Neglected Tropical Diseases 6(8): e1760.

Cahyati, W.H., Asmara, W., Umniyati, S.R. & Mulyaningsih, B. 2017. The phytochemical analysis of hay infusions and papaya leaf juice as an attractant containing insecticide for Aedes aegypti. KEMAS: Jurnal Kesehatan Masyarakat 12(2): 218-224.

Darriet, F. & Corbel, V. 2008. Aedes aegypti oviposition in response to NPK fertilizers. Parasite 15(1): 89-92.

Day, J. 2016. Mosquito oviposition behavior and vector control. Insects 7(4): 65.

Dieng, H., Rajasaygar, S., Ahmad, A.H., Rawi, C.S.M., Ahmad, H., Satho, T., Miake, F., Zuharah, W.F., Fukumitsu, Y. & Saad, A.R. 2014. Indirect effects of cigarette butt waste on the dengue vector Aedes aegypti (Diptera: Culicidae). Acta Tropica 130(2): 123-130.

Geier, M., Bosch, O.J. Boeckh, J. 1999. Ammonia as an attractive component of host odour for the yellow fever mosquito, Aedes aegypti. Chemical Senses 24: 647-653.

Hinze, A., Lantz, J., Hill, S.R. & Ignell, R. 2021. Mosquito host seeking in 3D using a versatile climate-controlled wind tunnel system. Frontier in Behavioral Neuroscience 15: 643693.

Iyyappan, V., Vetrivel, B., Asharaja, A.C., Shanthakumar, S.P. & Reegan, A.D. 2022. Oviposition responses of gravid Aedes aegypti Linn. mosquitoes (Diptera: Culicidae) to natural organic infusions under laboratory condition. Journal of Asia-Pacific Entomology 25: 101853.

Kim, D.Y., Leepasert, T., Bangs, M.J. & Chareonviriyaphap. T. 2021. Evaluation of mosquito attractant candidates using a high-throughput screening system for Aedes aegypti (L.), Culex quinquefasciatus Say. and Anopheles minimus Theobald (Diptera: Culicidae). In

sect 12(6): 528.

Krockel, U., Rose, A., Eiras, A.E. & Geuer, M. 2006. New tools for surveillance of adult yellow fever mosquitoes: Comparison of trap catches with human landing rates in an urban environment. Journal of American Mosquito Control Association 22: 229-238.

Leong, C-S., Vythilingam, I., Liew, J.W-K., Wong, M-L., Wan-Yusoff, W.S. & Lau, Y-L. 2019. Enzymatic and molecular characterization of insecticide resistance mechanisms in field populations of Aedes aegypti from Selangor, Malaysia. Parasites Vectors 12(1): 236.

Mahadevan, V.P. & Sen, A. 2017. Laboratory evaluation of synthetic blends of I- (+) – lactic acid, ammonia, and ketones as potential attractants for Aedes aegypti. Journal of the American Mosquito Control Association 33(4): 301-308.

Marques, G.R., Chaves, L.S.M., Serpa, L.L.N., Arduíno, M.D.B., Chaves, F.J.M. 2013. Public drinking water supply and egg laying by Aedes aegypti. Revista de Saude Publica 47(3): 579-587.

Mohd Ngesom, A.M., Razi, A.A., Azizan, N.S. Ahmad, N.W., Lasim, A.M., Liang, Y., Greenhalgh, D. et al. 2021. Evaluation of a mosquito home system for controlling Aedes aegypti. Parasites & Vectors 14: 413.

Mosquera, K.D., Villegas, L.E.M., Fernandes, G.R., David, M.R., Maciel-de-Freitas, R., Moreira, L.A. & Lorenzo, M.G. 2023. Egg-laying by female Aedes aegypti shapes the bacterial communities of breeding sites. BMC Biology 21: 97.

Nascimento, K.L.C., Silva, J.F.M., Zequi, J.A. & Lopes, J. 2020. Comparison between larval survey index and positive ovitrap index in the evaluation of population of Aedes (Stegomyia) aegypti (Linnaeus, 1762) North of Parana, Brazil. Environmental Health Insight 14: 1-8.

Obenauer, P., Allan, S. & Kaufman, P. 2010. Aedes albopictus (Diptera: Culicidae) oviposition response to organic infusions from common flora of suburban Florida. Journal of Vector Ecology 35(2): 301-306.

Onchuru, T.O., Ajamma, Y.U., Burugu, M., Kaltenpoth, M., Masiga, D. & Villinger, J. 2016. Chemical parameters and bacterial communities associated with larval habitats of Anopheles, Culex and Aedes mosquitoes (Diptera: Culicidae) in western Kenya. International Journal of Tropical Insect Science 2016 36(3): 146-160.

Ong, J., Chong, C.S., Yap, G., Lee, C., Razak, M.A.A., Chiang, S. & Ng, L.C. 2020. Gravid deployment for adult Aedes aegypti surveillance and its impact on dengue cases. PLoS Neglected Tropical Diseases 14(8): e0008528.

Ponnusamy, L., Xu, N., Boroczky, K., Wesson, D.M., Ayyash, L.A., Schal, C. & Apperson, C. S. 2010. Oviposition responses of the mosquitoes Aedes aegypti and Aedes albopictus to experimental plant infusions in laboratory bioassays. Journal of Chemical Ecology 36(7): 709-719.

Rasli, R., Lee, H., Wasi Ahmad, N., Fikri, S., Ali, R., Muhamed, K., Hadi, A., Liu, Q-Y. & Meng, F. 2018. Susceptibility status and resistance mechanisms in permethrin selected, laboratory susceptible and field collected Aedes aegypti from Malaysia. Insects 9(2): 43.

Rajendran, D., Adnan, F.N., Besar, A.U.A., Yusoff, M. & Zuharah, W.F. 2021. Status of insecticide resistance on Aedes aegypti (L.) and Aedes albopictus (SKUSE) in Kampar, Perak, Malaysia. Serangga 26(2): 245-254.

Santos, E., Correia, J., Muniz, L., Meiado, M. & Albuquerque, C. 2010. Oviposition activity of Aedes aegypti L. (Diptera: Culicidae) in response to different organic infusions. Neotropical Entomology 39(2): 299-302.

Satho, T., Dieng, H., Ahmad, M.H.I., Ellias, S.B., Hassan, A.A., Abang, F. et al. 2015. Coffee and its waste repel gravid Aedes albopictus females and inhibit the development of their embryos. Parasites & Vectors 8: 272.

Shragai. T., Harrington, L., Alfonso-Parra, C. & Avila, F. 2019. Oviposition site attraction of Aedes albopictus to sites with conspecific and heterospecific larvae during an ongoing invasion in Medellin, Colombia. Parasites & Vectors 12: 455.

Shu, C.Y. & Shelomi, M. 2021. Syzygium samarangense leaf infusion as Aedes albopictus (Diptera: Culicidae) ovitrap bait. Journal of Medical Entomology 58(2): 965-968.

Smallegange, R.C., Verhulst, N.O. & Takken, W. 2011. Sweaty skin, an invitation to bite? Trends in Parasitology 27(4): 143-148.

Suman, D.S. 2019. Evaluation of enhanced oviposition attractant formulations against Aedes and Culex vector mosquitoes in urban and semi-urban areas. Parasitology Research 118: 743-750.

Tian, N., Zhen, J.X., Guo, Z.Y., Li, L.H., Xia, S., Lv, S. 2022. Dengue incidence trends and its burden in major endemic regions from 1990 to 2019. Tropical Medicine and Infectious Disease 7(8): 180.

Walker, E.D. 2016. Toxicity of sulfide and ammonium to Aedes triseriatus larvae (Diptera: Culicidae) in water-filled tree holes and tires. Journal of Medical Entomology 53(3): 577-583.

Wooding, M, Naude, Y., Rohwer, E. & Bouwer, M. 2020. Controlling mosquitoes with semiochemicals: a review. Parasites Vector 12: 80.

Xie, L., Yang, W., Liu, H., Xie, Y., Lin, F. et al. 2019. Enhancing attraction of the vector mosquito Aedes albopictus by using a novel synthetic odorant blend. Parasites & Vectors 12: 382.

Yatim, M.F.M., Azil, A.H., Safian, N., Salleh, A.F.M. & Shahar, M.K. 2021. Comparative Analyses on Synthetic Membranes for Artificial Blood Feeding of Aedes aegypti using Digital Thermo Mosquito Blood Feeder (DITMOF). Pertanika Journal of Science & Technology 29(3): 2073-2086.


Refbacks

  • There are currently no refbacks.