BEHAVIOURAL PATTERNS AND MORPHOLOGICAL ADVANTAGES FAVOUR SUCCESSFUL USE OF Crematogaster schmidti TRAILS BY Camponotus lateralis WORKERS (HYMENOPTERA: FORMICIDAE)

Stanislav Stukalyuk, Dmytro Gladun, Ascar Akhmedov

Abstract


The paper examines the relationship between two ant species: Camponotus lateralis and Crematogaster schmidti in the neighboring habitat in the biocenoses of the Southern Coast of the Crimea (Ukraine). The ecological characteristics of the species are given, the structure of forage areas is described, as well as the daily activity of ants in shared habitats. It was shown that Camponotus lateralis accesses the food resources of Crematogaster schmidti using their trails. As a result of a frame-by-frame analysis of the video recordings, a number of behavioural responses have been identified for each species that it displays during interspecific contacts on the trails. It was shown that Camponotus lateralis successfully avoids contact by changing its trajectory at a distance of about 1 cm from Crematogaster schmidti workers. The aggressive reaction of Crematogaster schmidti was only recorded in few cases after antenna contacts. In most cases, Camponotus lateralis reacted more quickly than Crematogaster schmidti after antennal contact and changed its trajectory. The structural characteristics of the antennae and eyes of workers of both species were compared. Camponotus lateralis workers were shown to have longer antennae on average. The eyes of Camponotus lateralis have, on average, more facets than those of Crematogaster schmidti and, on average, more facets per unit of eye area. The significance of these morphological advantages of Camponotus lateralis for the successful use of Crematogaster schmidti trails is discussed.


Full Text:

PDF

References


Baroni Urbani, C. 1969. Trail sharing between Camponotus and Crematogaster: some comments and ideas. International Union for the study of social insects. VI Congress: 11-17.

Barsagade, D.D., Tembhare, D.B. & Kadu, S.G. 2013. Microscopic structure of antennal sensilla in the carpenter ant Camponotus compressus (Fabricius) (Formicidae: Hymenoptera). Asian Myrmecology 5: 113-120.

Beugnon, G., Chagne, P. & Dejean, A. 2001. Colony structure and foraging behavior in the tropical formicine ant, Gigantiops destructor. Insectes Sociaux 48: 347-351.

Binz, H., Foitzik, S., Staab, F. & Menzel, F. 2014. The chemistry of competition: exploitation of heterospecific cues depends on the dominance rank in the community.Animal Behaviour 94: 45-53.

Brandstaetter, A.S., Endler, A.& Kleineidam, C.J. 2008. Nestmate recognition in ants is possible without tactile interaction. Naturwissenschaften 95: 601-608.

Briscoe, A.D. & Chittka, L. 2001. The evolution of color vision in insects. Annual Review of Entomology 46: 471-510.

Cammaerts, M.-C. 2007. Colour vision in the ant Myrmica sabuleti Meinert, 1861 (Hymenoptera: Formicidae). Myrmecological News 10: 41-50.

Czaczkes, T.J., Grüter, C., Ellis, L., Wood, E. & Ratnieks, F.L. 2013. Ant foraging on complex trails: route learning and the role of trail pheromones in Lasius niger. Journal of Experimental Biology 216(2): 188-197.

Czaczkes, T.J., Grüter, C. & Ratnieks, F.L. 2015. Trail pheromones: an integrative view of their role in social insect colony organization. Annual Review of Entomology 60: 581-599.

Czechowski, W. 2004. Scarcity of sites suitable for nesting promotes plesiobiosis in ants (Hymenoptera: Formicidae). Entomologica Fennica 15(4): 211-218.

Dlussky, G.M. 1965. Methods for the quantitative accounting of soil ants. Zoological Journal 44(5): 716-727. (In Russian)

Emery, C. 1886. Mimetismo e costumi parassitari del Camponotus lateralis Ol. Bollettino della Società Entomologica Italiana 18: 412-413.

Emery, C. 1915. La vita delle Formiche. Bocca: Torino.

Evison, S.E.F., Petchey, O.L., Beckerman, A.P. & Ratnieks, F.L.W. 2008. Combined use of pheromone trails and visual landmarks by the common garden ant Lasius niger. Behavioral Ecology and Sociobiology 63: 261-267.

Gobin, B., Peeters, C. & Billen, J. 1998. Interspecific trail following and commensalism between the Ponerine ant Gnamptogenys menadensis and the Formicine ant Polyrhachis rufipes. Journal of Insect Behavior 11: 361-369.

Goetsch, W. 1942. Ein neues Gastverhaltnis zwischen Ameisen-Staaten. Sammelheft: 114.

Goetsch, W. 1951. Ameisen und Termiten studien in Ischia, Capri und Neapel. Zoologische Jahrbücher Abteilung für Systematik, Geographie und Biologie der Tiere 80: 64-98.

Goetsch, W. 1953. Vergleichende Biologie der Insekten-Staaten. Verlagsgesell: Leipzig.

Greiner, B., Narendra, A., Reid, S.F., Dacke, M., Ribi, W.A. & Zeil, J. 2007. Eye structure correlates with distinct foraging-bout timing in primitive ants. Current Biology17(20): 879-880.

Gronenberg, W. & Hölldober, B. 1999. Morphologic representation of visual and antennal information in the ant brain. Journal of Comparative Neurology 412: 229-240.

Hangartner, W. 1967. Spezifitat und Inaktivierung des Spurphcromons yon Lasius fuliginosus Latr. und Orientierung der Arbeiterinnen im Duftfeld. Dissertation der Philosophischen, Fakultat II der Universitat Zurich.

Hölldobler, B. &Wilson, E. O. 1990. The Ants. Harvard : Harvard University Press.

Ito, F., Hashim, R., Huei, Y.S., Kaufmann, E., Akino, T. & Billen, J. 2004. Spectacular Batesian mimicry in ants. Naturwissenschaften 91(10): 481-484.

Kaudewitz, F. 1955. Zum Gastverhaltnis zwichen Crematogaster scutellaris Ol. Mit Camponotus lateralis bicolor Ol. Biologisches Zentralblatt 74: 69-87.

Johnson, R.A. & Rutowski, R.L. 2022. Color, activity period, and eye structure in four lineages of ants: Pale, nocturnal species have evolved larger eyes and larger facets than their dark, diurnal congeners. PloS One 17(9): e0257779.

Lenoir, A., Malosse, C.& Yamaoka, R. 1997. Chemical mimicry between parasitic ants of the genus Formicoxenus and their host Myrmica (Hymenoptera, Formicidae). Biochemical Systematics and Ecology 25(5): 379-389.

Menzel, R. & Knaut, R. 1973. Pigment movement during light and chromatic adaptation in the retina cells of Formica polyctena (Hymenoptera, Formicidae). Journal of Comparative Physiology 86: 125-138.

Menzel, F., Blüthgen, N. & Schmitt, T. 2008. Tropical parabiotic ants: Highly unusual cuticular substances and low interspecific discrimination. Frontiers in Zoology 5: 16.

Menzel F. & Blüthgen, N. 2010. Parabiotic associations between tropical ants: equal partnership or parasitic exploitation? Journal of Animal Ecology 79(1): 71-81.

Menzel, F., Woywod, M., Blüthgen, N. & Schmitt, T. 2010a. Behavioural and chemical mechanisms behind a Mediterranean ant–ant association. Ecological Entomology 35: 711-720.

Menzel, F., Pokorny, T., Blüthgen, N. & Schmitt, T. 2010b. Trail-sharing among tropical ants: interspecific use of trail pheromones? Ecological Entomology 35(4): 495-503.

Menzel, F., Staab, M., Chung, A.Y.C., Gebauer, G. & Blüthgen, N., 2012. Trophic ecology of parabiotic ants: Do the partners have similar food niches?Austral Ecology37(5): 537-546.

Menzel, F., Blüthgen, N., Tolasch, T., Conrad, J., Beifuß, U., Beuerle, T. & Schmitt, T., 2013. Crematoenones - a novel substance class exhibited by ant’s functions as appeasement signal. Frontiers in Zoology 10(1):32.

Menzel, F., Kriesell, H. & Witte, V. 2014. Parabiotic ants: the costs and benefits of symbiosis. Ecological Entomology 39(4): 436-444.

Moser, J., Reeve, J., Bento, J., Della Lucia, T., Cameron, R. & Heck, N. 2004. Eye size and behaviour of day- and night-flying leafcutting ant alates. Journal of Zoology 264(1): 69-75.

Nakanishi, A., Nishino, H., Watanabe, H., Yokohari, F. & Nishikawa, M. 2009. Sex-specific antennal sensory system in the ant Camponotus japonicus: structure and distribution ofsensilla on the flagellum. Cell TissueResearch 338: 79-97.

Ogawa, Y., Narendra, A. & Hemmi, J.M. 2022. Nocturnal Myrmecia ants have faster temporal resolution at low light levels but lower adaptability compared to diurnal relatives. Iscience 25(4): 104-134.

Palavalli-Nettimi, R. & Narendra, A., 2018. Miniaturisation decreases visual navigational competence in ants. Journal of Experimental Biology 221(7): jeb177238.

Palavalli-Nettimi, R., Ogawa, Y., Ryan, L.A., Hart, N.S. & Narendra, A. 2019. Miniaturisation reduces contrast sensitivity and spatial resolving power in ants. Journal of Experimental Biology 222(12): jeb203018.

Perl, C. & Niven, J. 2016. Colony-level differences in the scaling rules governing wood ant compound eye structure. Scientific Reports 6: 24204.

Popp, S., Buckham-Bonnett, P. & Evison, S.E.F. 2018. No evidence for tactile communication of direction in foraging Lasius ants. Insectes Sociaux 65: 37-46.

Radchenko A.G. 2016. Ants (Hymenoptera, Formicidae) of Ukraine. Kiev: Schmalhausen Institute of zoology NAS of Ukraine, Kiev. (In Russian).

Reznikova Zh. I. Interspecific Relationships in Ants. Novosibirsk: Nauka, 1983.

Sanhudo, C.E.D., Izzo, T.J. & Brandão, C.R.F. 2008. Parabiosis between basal fungus-growing ants (Formicidae, Attini).Insectes Sociaux 55: 296-300.

Santini, G., Ramsay, M.P., Tucci, L., Ottonetti, L. & Frizzi, F. 2011. Spatial patterns of the ant Crematogaster scutellaris in a model ecosystem. Ecological Entomology 36:625-634.

Schifani, E., Giannetti, D., Csősz, S., Castellucci, F., Luchetti, A., Castracani, C., Spotti, F.A., Mori, A. & Grasso, D.A. 2022. Is mimicry a diversification-driver in ants? Biogeography, ecology, ethology, genetics and morphology define a second West-Palaearctic Colobopsis species (Hymenoptera: Formicidae). Zoological Journal of the Linnean Society 194: 1424-1450.

Seidl, T. & Wehner, R. 2006. Visual and tactile learning of ground structures in desert ants. Journal of Experimental Biology 209(17): 3336-3344.

Seifert B. 2018. The ants of Central and North Europe. Tauer: Lutra Verlags und Vertriebsgesellschaft.

Seifert, B. 2019. A taxonomic revision of the members of the Camponotus lateralis species group (Hymenoptera: Formicidae) from Europe, Asia Minor and Caucasia. Soil Organisms 91(1): 7-32.

Sprenger, P.P., Müsse, C., Hartke, J., Feldmeyer, B., Schmitt, T., Gebauer, G. & Menzel, F. 2021. Dinner with the roommates: Trophic niche differentiation and competition in a mutualistic ant-ant association. Ecological Entomology 46: 562-572.

Stukalyuk, S.V. & Radchenko, V.G. 2011. Structure of multi-species ant assemblages (Hymenoptera, Formicidae) in the Mountain Crimea. Entomological Review 91(1): 15-36.

Stukalyuk, S. & Goncharenko, I. 2020. Shift in the structure of Lasius flavus (Hymenoptera, Formicidae) nest complexes under the influence of anthropogenic factors. Serangga 25(3): 160-178.

Stukalyuk, S., Radchenko, Y., Gonchar, O., Akhmedov, A., Stelia, V., Reshetov, A. & Shymanskyi, A. 2021. Mixed colonies of Lasius umbratus and Lasius fuliginosus (Hymenoptera, Formicidae): When superparasitism may potentially develop into coexistence: A case study in Ukraine and Moldova. Halteres 12: 25-48.

Stukalyuk, S., Akhmedov, A., Gilev, A., Reshetov, A., Radchenko, Y. & Kosiuk, N. 2022. Effect of urban habitats on colony size of ants (Hymenoptera, Formicidae). In memory of Professor A. A. Zakharov (Russian Academy of Sciences, Moscow). Turkish Journal of Zoology 46(2): 194-206.

Toshiharu, A. & Ryohei, Y. 2002. Cuticular Hydrocarbon profile as a critical cue candidate for nestmate recognition in Lasius fuliginosus (Hymenoptera: Formicidae). Entomological Science (3): 267-273.

Vantaux, A., Dejean, A. & Dor, A. 2007. Parasitism versus mutualism in the ant-garden parabiosis between Camponotus femoratus and Crematogaster levior. Insectes Sociaux 54: 95-99.

Widihastuty, R.S. & Fadhillah, W. 2021. Semiochemical interaction between Myopopone castanea Smith with its prey Oryctes rhinoceros Linn. larvae. Serangga 26(3): 99-109.

Włodarczyk, T. 2012. Recognition of individuals from mixed colony by Formica sanguinea and Formica polyctena ants. Journal of Insect Behavior 25: 105-113.

Włodarczyk, T. & Szczepaniak, L. 2014. Incomplete homogenization of chemical recognition labels between Formica sanguinea and Formica rufa ants (Hymenoptera: Formicidae) living in a mixed colony. Journal of Insect Science 14(214): 1-7.

Wüst, M. & Menzel, F. 2016. I smell where you walked - how chemical cues influence movement decisions in ants. Oikos 126: 03332.

Yilmaz, A., Aksoy, V., Camlitepe, Y. & Giurfa, M. 2014. Eye structure, activity rhythms, and visually-driven behavior are tuned to visual niche in ants. Frontiers in Behavioral Neuroscience 8: 205.

Zimmermann, S. 1934. Beitrag zur Kenntnis der Ameisenfauna Suddalmatiens. Verhandlungen der Zoologisch-Botanischen Gesellschaft in Wien 84: 1-65.


Refbacks

  • There are currently no refbacks.