PLANT ESSENTIAL OILS AND THEIR EFFECTIVENESS AGAINST Musca domestica LINNAEUS, 1758 AND ITS PARASITOIDS

Mahyar Kimiaei, Alireza Jalali Zand, Esmaeil Mahmoodi, Masih Razmjoo

Abstract


Pests and vector insects cause a great deal of economic and health disruption. Insect resistance and bioaccumulation are major disadvantages of the chemical control methods used against this pest. We investigated the larvicide and inhibition effect of Citrus sinensis (L.) Osbeck and Mentha pulegium Linnaeus essential oils against larvae and pupae of the housefly, Musca domestica Linnaeus, 1758. Their effects on a major parasitoid of houseflies; Muscidifurax raptor Girault & Sanders, 1910 were also investigated. Both essential oils were found to have significant insecticidal activity against larvae and pupae of houseflies. The LC50 of C. sinensis and M. pulegium essential oils were for larvae 3.93 and 0.71 ml/cm2, and for pupa 0.41 and 0.23 ml/cm2, respectively. Surprisingly, the parasitoids were less affected by plant-applied essential oils as compared to houseflies. After 24 and 48 hours of exposure, the LC50 for C. sinensis and M. pulegium essential oils was found to be 71.2 and 52.6 ml/cm2 and 45.2 and 37.6 ml/cm2, respectively. Overall, this experiment indicated that low concentrations of essential oils were found to have a significant effect on houseflies, but not parasitoids. Thus, it can be used in combination in Integrated Pest Management (IPM) programs to provide effective results.


Full Text:

PDF

References


Acevedo, G.R., Zapater, M. & Toloza, A.C. 2009. Insecticide resistance of house fly, Musca domestica (L.) from Argentina. Parasitology Research 105(2): 489-493.

Ahmadi, E., Khajehali, J., Jonckheere, W. & Van Leeuwen, T. 2022. Biochemical and insecticidal effects of plant essential oils on insecticide resistant and susceptible populations of Musca domestica L. point to a potential cross-resistance risk. Pesticide Biochemistry and Physiology 184: 105115.

Bora, H., Kamle, M., Mahato, D.K., Tiwari, P. & Kumar, P. 2020. Citrus essential oils (CEOs) and their applications in food: An overview. Plants 9(3): 357.

Giunti, G., Benelli, G., Palmeri, V., Laudani, F., Ricupero, M., Ricciardi, R., Maggi, F., Lucchi, A., Guedes, R., Desneux, N. & Campolo, O. 2022. Non-target effects of essential oil-based biopesticides for crop protection: Impact on natural enemies, pollinators, and soil invertebrates. Biological Control 176(8): 105071.

Göldel, B., Lemic, D. & Bažok, R. 2020. Alternatives to synthetic insecticides in the control of the colorado potato beetle (Leptinotarsa decemlineata Say) and their environmental benefits. Agriculture 10(12): 611.

González, J.O.W., Laumann, R.A., Da Silveira, S., Moraes, M.C.B., Borges, M. & Ferrero, A. A. 2013. Lethal and sublethal effects of four essential oils on the egg parasitoids Trissolcus basalis. Chemosphere 92(5): 608-615.

Graczyk, T.K., Knight, R., Gilman, R.H. & Cranfield, M.R. 2001. The role of non-biting flies in the epidemiology of human infectious diseases. Microbes and Infection 3(3): 231-235.

Graham, J.P., Price, L.B., Evans, S.L., Graczyk, T.K. & Silbergeld, E.K. 2009. Antibiotic resistant enterococci and staphylococci isolated from flies collected near confined poultry feeding operations. Science of the Total Environment 407(8): 2701-2710.

Hinkle, N.C. & Hogsette, J.A. 2021. A review of alternative controls for house flies. Insects 12(11): 1042.

Hu, W., Zhang, N., Chen, H., Zhong, B., Yang, A., Kuang, F., Ouyang, Z. & Chun, J. 2017. Fumigant activity of sweet orange essential oil fractions against red imported fire ants (Hymenoptera: Formicidae). Journal of Economic Entomology 110(4): 1556-1562.

Khalaf, A.F.A., Hussein, K.T. & Shoukry, K.K. 2009. Biocidal activity of two botanical volatile oils against the larvae of Synthesiomyia nudiseta (Wulp) (Diptera: Muscidae). Egyptian Academic Journal of Biological Sciences. A, Entomology 2(1): 89-101.

Kristensen, M. & Jespersen, J.B. 2003. Larvicide resistance in Musca domestica (Diptera: Muscidae) populations in Denmark and establishment of resistant laboratory strains. Journal of Economic Entomology 96(4): 1300-1306.

Maheswaran, R., Sathish, S. & Ignacimuthu, S. 2008. Larvicidal activity of Leucas aspera (Willd.) against the larvae of Culex quinquefasciatus Say and Aedes aegypti L. International Journal of Integrative Biology 2(3): 214-217.

Malik, A., Singh, N. & Satya, S. 2007. House Fly (Musca domestica): A review of control strategies for a challenging pest. Journal of Environ Science Health Part B 42:453–469.

Mathew, N., Anitha, M.G., Bala, T.S.L., Sivakumar, S.M., Narmadha, R. & Kalyanasundaram, M. 2009. Larvicidal activity of Saraca indica, Nyctanthes arbor-tristis, and Clitoria ternatea extracts against three mosquito vector species. Parasitology research 104(5): 1017-1025.

Muhammed, M., Dugassa, S., Belina, M., Zohdy, S., Irish, S.R. & Gebresilassie, A. 2022. Insecticidal effects of some selected plant extracts against Anopheles stephensi (Culicidae: Diptera). Malaria Journal 21(1): 1-10.

Nascimento, V.F., Auad, A.M., de Resende, T.T., Visconde, A.J.M. & Dias, M.L. 2022. Insecticidal Activity of Aqueous Extracts of Plant Origin on Mahanarva spectabilis (Distant, 1909) (Hemiptera: Cercopidae). Agronomy 12(4): 947.

Nisar, M.S., Ismail, M.A., Ramzan, H., Maqbool, M.M., Ahmad, T., Ghramh, H.A., Khalofah, A., Kmet, J., Horvát, M. & Farooq, S. 2021. The impact of different plant extracts on biological parameters of Housefly [Musca domestica (Diptera: Muscidae)]: Implications for management. Saudi Journal of Biological Sciences 28(7): 3880-3885.

Nivsarkar, M., Cherian, B. & Padh, H. 2001. Alpha-terthienyl: A plant-derived new generation insecticide. Current Science 81(6): 667-672.

Rahuman, A.A. Venkatesan, P. & Gopalakrishnan, G. 2008. Mosquito larvicidal activity of oleic and linoleic acids isolated from Citrullus colocynthis (Linn.) Schrad. Parasitology Research 103(6): 1383-1390.

Rahuman, A.A., Bagavan, A., Kamaraj, C., Vadivelu, M., Zahir, A.A., Elango, G. & Pandiyan, G. 2009. Evaluation of indigenous plant extracts against larvae of Culex quinquefasciatus Say (Diptera: Culicidae). Parasitology Research 104(3): 637-643.

Salem, N., Bachrouch, O., Sriti, J., Msaada, K., Khammassi, S., Hammami, M., Selmi, S., Boushih, E., Koorani, S., Abderraba, M., Marzouk, B., Limam, F. & Mediouni Ben Jemaa, J. 2017. Fumigant and repellent potentials of Ricinus communis and Mentha pulegium essential oils against Tribolium castaneum and Lasioderma serricorne. International journal of food properties 20(3): S2899-S2913.

Sasaki, T., Kobayashi, M. & Agui, N. 2000. Epidemiological potential of excretion and regurgitation by Musca domestica (Diptera: Muscidae) in the dissemination of Escherichia coli O157: H7 to food. Journal of Medical Entomology 37(6): 945-949.

Shono, T. & Scott, J.G. 2003. Spinosad resistance in the housefly, Musca domestica, is due to a recessive factor on autosome 1. Pesticide Biochemistry and Physiology 75(1-2): 1-7.

Singh, D. & Singh, A.K. 1991. Repellent and insecticidal properties of essential oils against housefly, Musca domestica L. International Journal of Tropical Insect Science 12(4): 487-491.

Siriwattanarungsee, S., Sukontason, K.L., Olson, J.K., Chailapakul, O. & Sukontason, K. 2008. Efficacy of neem extract against the blowfly and housefly. Parasitology Research 103(3): 535-544.

Ziaee, A., Dehnavi, L.D., Khormizi, M.Z., Goldasteh, S., Farazmand, H., Hanley, G.A. & Latibari, M.H. 2020. Performance estimation and synergetic role of caffeine in increasing efficacy of Bacillus thuringiensis var. kurstaki on Plodia interpunctella Hübner (Lepidoptera: Pyralidae). Serangga 25(3): 179-192.


Refbacks

  • There are currently no refbacks.