EFFECTS OF JASMONIC ACID ON THE FEEDING ACTIVITY AND REPRODUCTIVE PERFORMANCE OF THE TWO-SPOTTED SPIDER MITES, Tetranychus urticae KOCH (TETRANYCHIDAE: ACARI)

Nur Fariza M Shaipulah, Nor Aida Rahayu Hashim, Nur Aida Hashim, Sharifah Masit’ah Syed Esa, Ju Lian Chong

Abstract


The two-spotted spider mite, Tetranychus urticae Koch, 1836 (Acari: Tetranychidae) is a common, yet major pest for rose cultivars. This study investigated the effect of jasmonic acid (JA), a key phytohormone in the mechanism of plant defence on the reproductive performance of T. urticae, and its damage to the leaves of roses (Rosa hybrida L.). The plants were initially treated with 10µM, 100µM and 1000µM, respectively of JA, and the female adults T. urticae were transferred to R. hybrida leaves after 1-hour and 12-hours of JA application. Results revealed that JA treatment at concentration of 100 µM (t4=4.51, P<0.05) and 1000 µM (t4 =10.82, P<0.001) reduced the infestation of T. urticae on leaves. Also, significantly fewer T. urticae eggs were observed after 1 hour (F4,15=32.869, P<0.001), and 12 hours (F4,15=44.149, P<0.001) of JA treatment. As compared to the control, a concentration of 1000µM JA exhibited the highest oviposition inhibition effect. Additionally, the 1-hour and 12-hours inhibition of oviposition (IOC50) values against T. urticae were 52.5 µM and 22.9 µM, respectively. These findings suggested that exogenous application of JA on R. hybrida was found to negatively affect the T. urticae feeding activity and its reproductive performance.  


Full Text:

PDF

References


Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of the American Mosquito Control Association 3(2): 302-303.

Alba, J.M., Schimmel, B.C.J., Glas J.J., Ataide, L.M.S., Pappas, M.L., Villarroel, C.A., Schuurink, R.C., Sabelis, M.W. & Kant, M.R. 2015. Spider mites suppress tomato defenses downstream of jasmonate and salicylate independently of hormonal crosstalk. New Phytologist 205: 828–840.

Ament, K., Kant, M.R., Sabeli, M.W., Haring, M.A. & Schuurink, R.C. 2004. Jasmonic acid is a key regulator of spider mite induced volatile terpenoid and methyl salicylate emission in tomato. Plant Physiology 135(4): 2025-2037.

Ataide, L.M.S., Pappas, M.L., Schimmel, B.C.J., Lopez-Orenes, A., Alba, J.M., Duarte, M.V.A., Pallini, A., Schuurink, R.C. & Kant, M.R. 2016. Induced plant defenses suppress herbivore reproduction but also constrain predation of their offspring. Plant Science 252: 300-310.

Blaazer, C.J.H., Villacis-Perez, E.A., Chafi, R., Van Leeuwen, T., Kant, M.R. & Schimmel, B.C.J. 2018. Why do herbivorous mites suppress plant defenses? Frontier of Plant Science 9: 1057.

Bruinsma, M., Posthumus, M.A., Mumm, R., Mueller, M.J., Van Loon, J.J.A. & Dicke, M. 2009. Jasmonic acid induced volatiles of Brassica oleracea attract parasitoids: Effects of time and dose, and comparison with induction by herbivores. Journal of Experimental Botany 60(9): 2575-2587.

Chen, G., Klinkhamer, P.G.L., Escobar-Bravo, R. & Leiss, K.A. 2018. Type VI glandular trichome density and their derived volatiles are differently induced by jasmonic acid in developing and fully developed tomato leaves: Implications for thrips resistance. Plant Science 276: 87-98.

Constabel, C.P. & Barbehen, R. 2008. Defensive roles of polyphenol oxidase in plants. In Schaller, A. (ed). Induced Plant Resistance to Herbivory, pp. 253-269. Dordrecht: Springer.

Delphia, C.M., Mescher, M.C. & De Moraes, C.M. 2007. Induction of plant volatiles by herbivores with different feeding habits and the effects of induced defenses on host-plant selection by thrips. Journal of Chemical Ecology 33: 997-1012.

Dhooria, M.S. 2016. Fundamentals of Applied Acarology. Singapore: Springer.

Escobar-Bravo, R., Klinkhamer, P.G.L. & Leiss, K.A. 2017. Induction of jasmonic acid associated defenses by thrips alters host suitability for conspecifics and correlates with increased trichome densities in tomato. Plant Cell Physiology 58(3): 622-634.

Frick, K.M., Foley, R.C., Siddique, K.H.M., Singh, K.B. & Kamphuis, L.G. 2019. The role of jasmonate signalling in quinolizidine alkaloid biosynthesis, wounding and aphid predation response in narrow leafed lupin. Functional Plant Biology 46(5): 443-454.

Glauser, G., Grata, E., Dubugnon, L., Rudaz, S., Farmer, E.E. & Wolfender, J-L. 2008. Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. Journal of Biological Chemistry 283:16400-16407.

Golizadeh, A., Ghavidel, S., Razmjou, J., Fathi, S.A.A. & Hassanpour, M. 2017. Comparative life table analysis of Tetranychus urticae Koch (Acari: Tetranychidae) on ten rose cultivars. Acarologia 57(3): 607-616.

Gols, R., Roosjen, M., Dijkman, H. & Dicke, M. 2003. Induction of direct and indirect plant responses by jasmonic acid, low spider mite densities or a combination of jasmonic acid treatment and spider mite infestation. Journal of Chemical Ecology 29(12): 2651-2666.

Howe, G.A. & Jander, G. 2008. Plant immunity to insect herbivores. Annual Review of Plant Biology 59: 41-66.

Huang, F.C. & Kutchan, T.M. 2000. Distribution of morphinan and benzo[c]phenanthridine alkaloid gene transcript accumulation in Papaver somniferum. Phytochemistry 53(5): 555-564.

Kant, M.R., Ament, K., Sabelis, M.W., Haring, M.A. & Schuurink, R.C. 2004. Differential timing of spider mite induced direct and indirect defenses in tomato plants. Plant Physiology 135(1): 483-495.

Kant, M.R., Jonckheere, W., Knegt, B., Lemos, F., Liu, J., Schimmel, B.C., Villarroel, C.A., Ataide, L.M., Dermauw, W., Glas, J.J., Egas, M., Janssen, A., Van Leeuwen, T., Schuurink, R.C., Sabelis, M.W. & Alba, J.M. 2015. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. Annals of Botany 115(7): 1015-1051.

Kaur, P., Dhooria, M.S. & Bhullar, M.B. 2006. Screening of rose (Rosa species) varieties against two-spotted spider mite (Tetranychus urticae) (Acari: Tetranychidae) and its control. Indian Journal of Agricultural Science 76(6): 391-393.

Kersch-Becker, Mônica, F., Kessler, A. & Thaler Jennifer, S., 2017. Plant defences limit herbivore population growth by changing predator prey interactions. Proceeding of the Royal Society B: Biological Science 284(1862): 20171120.

Khajehali, J., van Nieuwenhuyse, P., Demaeght, P., Tirry. L. & van Leeuwen, T. 2011. Acaricide resistance and resistance mechanism in Tetranychus urticae populations from rose greenhouse in the Netherlands. Pest Management Science 67(11): 1424-1433.

Koo, A.J.K. & Howe, G.A. 2009. The wound hormone jasmonate. Phytochemistry 70(13): 1571-1580.

Martinez, M., Santamaria, M.E., Diaz-Mendoza, M., Arnaiz, A., Carrillo, L., Ortego, F. & Diaz, I., 2016. Phytocystatins: Defense proteins against phytophagous insects and Acari. International Journal of Molecular Sciences 17(10):1747.

Mendoza-Garcia, E.E., Ortega-Arenas, L.D., Pérez-Pacheco, R. & Rodríguez-Hernández, C. 2014. Repellency, toxicity, and oviposition inhibition of vegetable extracts against greenhouse whitefly Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae). Chilean Journal Agricultural Research 74(1): 41-48.

Miyazaki, J., Stiller, W.N., Truong, T.T., Xu, Q., Hocart, C.H., Wilson, L.J. & Wilson, I.W. 2014. Jasmonic acid is associated with resistance to two-spotted spider mites in diploid cotton (Gossypium arboreum). Functional Plant Biology 41(7): 748-757.

Nasrin, M., Amin, M.R., Miah, M.R.U., Akanda, A.M. & Miah, M.G. 2021. Diversity of insect and mite species in chili ecosystem; relationship of the major pests with predator and plant damage. Serangga 26 (1): 95-108.

Omer, A.D., Granett, J., Karban, R. & Villa, E.M. 2001. Chemically induced resistance against multiple pests in cotton. International Journal of Pest Management 47(1): 49-54.

Ortego, F. 2012. Physiological adaptations of the insect gut to herbivory. In. Smagghe, G. & Diaz, I. (eds.). Arthropod-Plant Interactions, pp. 75-88. Dordrecht: Springer.

Pan, Q., Saiman, M.Z., Verpoorte, R. & Tang, K. 2018. Accumulation of terpenoid indole alkaloids in jasmonic acid elicited catharanthus roseus plants before and during flowering. Pakistan Journal of Botany 50: 1077-1083.

Park, Y.L. & Lee, J.H. 2002. Leaf cell and tissue damage of cucumber caused by two spotted spider mite (Acari: Tetranychidae). Horticultural Entomology 95(5): 952-957.

Pietrosiuk, A., Furmanowa, M., Kropczyńska, D., Kawka, B. & Wiedenfeld, H. 2003. Life history parameters of the two-spotted spider mite (Tetranychus urticae Koch) feeding on bean leaves treated with pyrrolizidine alkaloids. Journal of Applied Toxicology 23(3): 187-190.

Pramudi, M.I., Rosa, H.O. & Hamidah. 2022. Diversity and abundance of pest mites (Acari: Tetranychidae) on papaya in Tanah Laut and Banjarbaru city South Kalimantan, Indonesia. Serangga 27(2): 1-12.

Reddy, P.P. 2016. Sustainable Crop Protection under Protected Cultivation. Singapore: Springer.

Redman, A.M., Cipollini, Jr. D.F. & Schultz, J. 2001. Fitness costs of jasmonic acid-induced defense in tomato, Lycopersicon esculentum. Oecologia 126: 380-385.

Ryan, S.M., Deboer, K.D. & Hamill, J.D. 2015. Alkaloid production and capacity for methyljasmonate induction by hairy roots of two species in Tribe Anthocercideae, family Solanaceae. Functional Plant Biology 42(8): 792-801.

Sani, I., Ismail, S.I., Saad, N., Abdullah, S., Jalinas, J. & Jamian, S. 2020. Insect pests of vegetables in Malaysia and their management using entomophatogenic fungi. Serangga 25(3): 126-143.

Sarmento, R.A., Lemos, F., Bleeker, P.M., Schuurink, R.C., Pallini, A., Almeida Oliveira, M.G., Lima, E.R., Kant, M., Sabelis, M.W. & Janssen, A. 2011. A herbivore that manipulates plant defence. Ecology Letter 14: 229-236.

Steinite, I. & Levinsh, G. 2002. Wound-induced responses in leaves of strawberry cultivars differing in susceptibility to spider mite. Journal of Plant Physiology 159: 491-497.

Thipyapong, P. & Steffens, C. 1997. Tomato polyphenol oxidase: Differential response of the polyphenol oxidase F promoter to injuries and wound signals. Plant Physiology 115: 409-418.

Uygun, T., Ozguven, M.M. & Yanar, D. 2020. A new approach to monitor and assess the damage caused by two-spotted spider mite. Experimental and Applied Acarology 82: 335–346.

Van Leeuwen, T., Tirry, L., Yamamoto, A., Nauen, R. & Dermauw, W. 2015. The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pesticide Biochemistry and Physiology 121: 12-21.

Villarroel, C.A., Jonckheere, W., Alba, J.M., Glas, J.J., Dermauw, W., Haring, M., van Leeuwen, T., Schuurink, R.C. & Kant, M.R. 2016. Salivary proteins of spider mites supress defenses in Nicotiana benthamiana and promote mite reproduction. Plant Journal 86: 119-131.

Warabieda, W., Marklewicz, M. & Wojclk, D. 2020. Mutual relations between jasmonic acid and acibenzolar-S-methyl in the induction of resistance to the two-spotted spider mite (Tetranychus urticae) in apple trees. Experimental and Applied Acarology 82: 59-79.

War, A.R., Gabriel, M.P., Buhroo, A.A., Tariq, A., Barkat, H., Ignacimuthu, S. & Sharma, H.C. 2012. Mechanisms of plant defense against insect herbivores. Plant Signal Behavior 7 (10): 1306-1320.

Wu, J. & Baldwin, I.T. 2009. Herbivory induced signalling in plants: perception and action. Plant Cell Environment 32(9): 1161-1174.

Xu, Y., Guo, H., Geng, G., Zhang, Q. & Zhang, A. 2021. Changes in defense-related enzymes and phenolic in resistant and susceptible common wheat cultivars under aphid stress. Acta Physiology Plant 43:36.

Zhang, P., Zhu, X., Huang, F., Liu, Y., Zhang, J., Lu, Y. & Ruan, Y. 2011. Suppression of jasmonic acid dependent defense in cotton plant by the mealybug Phenacoccus solenopsis. PLoS One 6(7): e22378.

Zhang, P.J., Zheng, S.J., van Loon, J.J.A., Boland, W., David, A., Mumm, R. & Dicke, M. 2009. Whiteflies interfere with indirect plant defense against spider mites in Lima bean. Proceeding of the National Academy of Sciences 106(50): 21202-21207.

Zhang, P.J., He, Y.C., Zhao, C., Ye, Z.H. & Yu, X.P. 2018. Jasmonic acid dependent defenses play a key role in defending tomato against Bemisia tabaci nymphs, but not adults. Frontiers in Plant Science 9: 1065.


Refbacks

  • There are currently no refbacks.