MONTHLY ASSESSMENT OF THE RELATIVE ABUNDANCE AND DEVELOPMENT OF IMMATURE STAGES OF Culex MOSQUITOES (DIPTERA: CULICIDAE) OF THE SELECTED BREEDING HABITATS IN NIGER, NIGERIA

Ibrahim Kura Shehu, Hamdan Ahmad, Intan Haslina Ishak, Israel Kayode Olayemi, Danjuma Solomon, Abu Hassan Ahmad, Yakudima Ismaila Ibrahim, Rashidu Mamman, Hasber Salim

Abstract


The information on relative abundance and distribution of Culex mosquitoes are essential for determining illness risk and this is especially critical when a disease spreads quickly and that prompt assessments for disease mitigation techniques are required. This study was conducted to assess and provide an epidemiological report on the relative abundance and development of immature stages of Culex in conventional larval breeding habitats in selected LGAs of Niger State, Nigeria. Gutter, swamps, and large water bodies were chosen as larval habitats, and samples were taken weekly from May to November 2019. The findings revealed the presence of three vector mosquito species in the areas namely: Culex quinquefasciatus (887.25±121.7), Cx. nigripalpus (434.50±46.34) and Cx. salinarius (351.92±32.48). Habitats-wised showed large water habitats had the abundance of Culex (686.75±98.11) followed by gutters (516.67±60.20) and the least was swamps (471.25±42.08) mosquitoes. Based on the monthly abundance rate (MAR), the peak abundance of the immature stages was June and July and declined in November in both habitats. While the age survival rate (ASR) differed significantly (P<0.05) from one another across the months in all the habitat types. On the age distribution within the habitat types, L4 (109.78±30.50) was the highest, in gutters, while in swamps, and large water habitats, L1 larvae were the most abundant (29.88±11.14 and 39.46±11.69), respectively. While between the habitats, gutters had a significantly higher abundance of L1, L2, L3, and L4, while swamp and larger water habitats were insignificant (P>0.05) from one another for L1 and L4 except for the L3 immature stage that was differentiated with larger water being the most abundant. The findings of this study imply that anthropogenic changes to the ecosystem are causing a severe hazard of culex-borne diseases (CBD) to public health in Niger State.


Full Text:

PDF

References


Adeleke, M. A., Adebimpe, W. O., Hassan, A. O., Oladejo, S. O., Olaoye, I., Olatunde, G. O. & Adewole, T. 2013. Larval habitats of mosquito fauna in Osogbo metropolis, Southwestern Nigeria. Asian Pacific Journal of Tropical Biomedicine 3(9): 673-677

Akaratovic, K.I., Kiser, J.P., Whitt, P.B., Harrison, R.L. & Harrison, B.A. 2021. Culex nigripalpus distribution expansion: First record in Virginia, new county records in North Carolina, and Revised United States Map. Journal of the American Mosquito Control Association 37(4): 188-197.

Akpan, G., Adepoju, K., Oladosu, O. & Adelabu, S. 2018. Dominant malaria vector species in Nigeria: Modelling potential distribution of Anopheles gambiae sensu lato and its siblings with MaxEnt. PloS One 13(10): e0204233.

Akpan, I.-O. M. & Nwabueze, E. 2015. A Survey of mosquito larval habitats and species distribution in Rivers State University of Science and Technology Nkpolu Port Harcourt, Nigeria. Methods 4048: 386N.

Amao, H., Idowu, E., Oyeniyi, T., Otubanjo, O. & Awolola, T. 2018. Relative abundance, distribution, and diversity of Culex (Diptera: Culicidae) mosquito species in Lagos, Southwest Nigeria. Nigeria Journal Entomology 34: 39-49.

Aneesh, E. 2014. Diversity and vectorial capacity of mosquitoes in Kuruva Island, Wayanad District, Kerala, India. Journal of Zoology Studies1(4): 16-22.

Austin, K., Bellinger, M. O. & Rana, P. 2017. Anthropogenic forest loss and malaria prevalence: a comparative examination of the causes and disease consequences of deforestation in developing nations. AIMS Environmental Science 4(2): 217-231.

Azari-Hamidian, S. 2011. Larval habitat characteristics of the genus Anopheles (Diptera: Culicidae) and a checklist of mosquitoes in Guilan Province, northern Iran. Iranian Journal of Arthropod-Borne Diseases 5(1): 37.

Barba, M., Fairbanks, E.L. & Daly, J.M. 2019. Equine viral encephalitis: prevalence, impact, and management strategies. Veterinary Medicine: Research and Reports 10: 99.

Braack, L., De Almeida, A.P.G., Cornel, A.J., Swanepoel, R. & De Jager, C. 2018. Mosquito-borne arboviruses of African origin: a review of key viruses and vectors. Parasites & Vectors 11(1): 1-26.

Dida, G.O., Gelder, F.B., Anyona, D.N., Abuom, P.O., Onyuka, J.O., Matano, A.-S., et al. & Ouma, C. 2015. Presence and distribution of mosquito larvae predators and factors influencing their abundance along the Mara River, Kenya, and Tanzania. SpringerPlus 4(1): 1-14.

Duguma, D., Hall, M.W., Smartt, C.T., Debboun, M. & Neufeld, J.D. 2019. Microbiota variations in Culex nigripalpus disease vector mosquito of West Nile virus and Saint Louis Encephalitis from different geographic origins. PeerJournal 6: e6168.

Duque, P.-L., Liria, J., Enríquez, S., Burgaleta, E., Salazar, J., Arrivillaga-Henríquez, J. & Navarro, J.-C. 2019. High mosquito diversity in an Amazonian village of Ecuador, surrounded by a Biological Reserve, using a rapid assessment method. Journal of Entomological and Acarological Research 51(1): 1-5.

Egwu, O., Ohaeri, C.C., Amaechi, E.C. & Ehisianya, C.N. 2018. Distribution and abundance of mosquito larvae in Ohafia, Abia State, Nigeria. Cuadernos de Investigación UNED, 10(2): 379-385.

Evans, O.P. & Adenomon, M.O. 2014. Modeling the prevalence of malaria in Niger State: An application of Poisson regression and negative binomial regression models. International Journal of Physical Science 2: 61-68.

Garba, Y., Olayemi, I., Salihu, I., Hassan, S. & Nma, E. 2018. Seasonal adaptive distribution of mosquito species in rice fields larval habitats in Minna, North Central Nigeria. International Journal of Applied Biological Researchs 9(2): 93-101.

Gatton, M.L., Chitnis, N., Churcher, T., Donnelly, M.J., Ghani, A.C., Godfray, H.C.J., et al. & Ranson, H. 2013. The importance of mosquito behavioural adaptations to malaria control in Africa. Evolution: International Journal of Organic Evolution 67(4): 1218-1230.

Gorris, M.E., Bartlow, A.W., Temple, S.D., Romero-Alvarez, D., Shutt, D.P., Fair, J.M., et al. & Manore, C.A. 2021. Updated distribution maps of predominant Culex mosquitoes across the Americas. Parasites & Vectors 14(1): 1-13.

Hancock, P.A. & Godfray, H.C.J. 2007. Application of the lumped age-class technique to studying the dynamics of malaria-mosquito-human interactions. Malaria Journal 6(1): 1-13.

Ikeh, G.N., Olayemi, I.K., Ukubuiwe, A.C., Jibrin, A.I., Shehu, I., Adeniyi, K.A. & Oluwafemi, O.J. 2017. Contributions of commercial water-based human activity ventures to mosquito (Diptera: Culicidae) in Minna Metropolis, Nigeria. International Journal of Applied Biological Research 8(1): 174-185.

Kenawy, M., Ammar, S. & Abdel-Rahman, H. 2013. Physico-chemical characteristics of the mosquito breeding water in two urban areas of Cairo Governorate, Egypt. Journal of Entomological and Acarological Research 45(3): 96-99.

Khan, S.U. & Khan, R.A. 2018. Characterization of breeding sites of anopheline mosquitoes in District Bannu, KPK, Pakistan. JPMA. The Journal of the Pakistan Medical Association 68(2): 175-186.

Kweka, E.J., Baraka, V., Mathias, L., Mwang’onde, B., Baraka, G., Lyaruu, L. & Mahande, A. M. 2019. Ecology of Aedes mosquitoes, the major vectors of arboviruses in the human population. Dengue Fever—.Journal of Global Health: Science and Practice 6(4): 40-51.

Madzlan, F., Dom, N.C., Zakaria, N., Hasnan, S.N.A., Tiong, C.S. & Camalxaman, S.N. 2018. Profiling of dengue vectors breeding habitat at urban residential areas in Shah Alam, Malaysia. Serangga 22(2): 185-216.

Mala, A.O. & Irungu, L.W. 2011. Factors influencing differential larval habitat productivity of Anopheles gambiae complex mosquitoes in a western Kenyan village. Journal of Vector-Borne Diseases 48(1): 52.

Mavian, C., Dulcey, M., Munoz, O., Salemi, M., Vittor, A. & Capua, I. 2019. Islands as hotspots for emerging mosquito-borne viruses: A one-health perspective. Viruses 11(1): 11.

McClure, K.M., Lawrence, C. & Kilpatrick, A.M. 2018. Land use and larval habitat increase Aedes albopictus (Diptera: Culicidae) and Culex quinquefasciatus (Diptera: Culicidae) abundance in lowland Hawaii. Journal of Medical Entomology 55(6): 1509-1516.

Mereta, S.T., Yewhalaw, D., Boets, P., Ahmed, A., Duchateau, L., Speybroeck, N.,….& Goethals, P.L. 2013. Physico-chemical and biological characterization of anopheline mosquito larval habitats (Diptera: Culicidae): Implications for malaria control. Parasites & Vectors 6(1):1-16.

Moise, I.K., Ortiz-Whittingham, L.R., Omachonu, V., Clark, M. & Xue, R.-D. 2021. Fighting mosquito bite during a crisis: Capabilities of Florida mosquito control districts during the COVID-19 pandemic. BMC Public Health 21(1): 1-8.

Mores, C.N., Turell, M.J., Dohm, D.J., Blow, J.A., Carranza, M.T. & Quintana, M. 2007. Experimental transmission of West Nile virus by Culex nigripalpus from Honduras. Vector-Borne and Zoonotic Diseases 7(2): 279-284.

Mutuku, F.M., Bayoh, M.N., Gimnig, J.E., Vulule, J.M., Kamau, L., Walker, E.D., et al. & Hawley, W.A. 2006. Pupal habitat productivity of Anopheles gambiae complex mosquitoes in a rural village in western Kenya. The American Journal of Tropical Medicine and Hygiene 74(1): 54-61.

Mwangangi, J.M., Mbogo, C.M., Muturi, E.J., Nzovu, J.G., Kabiru, E.W., Githure, J.I., et al. & Beier, J.C. 2007. Influence of biological and physicochemical characteristics of larval habitats on the body size of Anopheles gambiae mosquitoes (Diptera: Culicidae) along the Kenyan Coast. Journal of Vector-Borne Diseases 44(2): 122.

Nwana, A.O., Okoh, H.I., Oyeniyi, A.T. & Adeogun, A.O. 2021. Larval habitat characterization and molecular identification of Anopheles gambiae complex in three local government Areas (LGAs) of Ekiti State, Nigeria. Pan African Journal of Life Sciences 5(3): 312-32.

Odero, J., Gomes, B., Fillinger, U. & Weetman, D. 2018. Detection and quantification of Anopheles gambiae sensu lato mosquito larvae in experimental aquatic habitats using environmental DNA (eDNA). Wellcome Open Research 3(26):1-17.

Olayemi, I. & Ande, A. 2008. Relative abundance and seasonal distribution of adult mosquito species in Offa, Kwara State, Nigeria. Nigerian Journal of Entomology 25: 47-52.

Olayemi, I.K. & Ande, A.T. 2009. Life table analysis of Anopheles gambiae (Diptera: Culicidae) to malaria transmission. Journal of Vector-Borne Diseases 46(4): 295-299.

Olayemi, I.K., Ukubuiwe, A.C. & Oyibo-Usman, K. 2014. Mosquito species occurrence and diversity in conventional larval breeding sites in Minna metropolis, Nigeria. International Journal of Innovation and Scientific Research 1: 86-93.

Omalu, I., Olayemi, I., Otuu, C., Hassan, S., Eke, S., Paul, S. & Uzoaga, G. 2015. Entomological and parasitological indices of malaria transmission in Minna, Niger State, North Central Nigeria. Advances in Research 3(2): 181-188.

Rueda, L.M. 2004. Pictorial keys for the identification of mosquitoes (Diptera: Culicidae) associated with dengue virus transmission. Zootaxa 589: 1–60.

Rydzanicz, K., Jawień, P., Lonc, E. & Modelska, M. 2016. Assessment of productivity of Culex spp. larvae (Diptera: Culicidae) in urban stormwater catch basin system in Wrocław (SW Poland). Parasitology Research 115(4): 1711-1720.

Salihu, I.M., Olayemi, I.K., Ukubuiwe, A.C., Garba, Y., Gusau, A.Y., Nma-etsu, M. & Usman, M.D. 2017. Influence of agro-chemical inputs on suitability of physico-chemical conditions of rice-fields for mosquito breeding in Minna, Nigeria. Journal of Mosquito Research 7(17): 134-141.

Shapiro, A., Green, T., Rao, S., White, S., Carner, G., Mertens, P.P. & Becnel, J.J. 2005. Morphological and molecular characterization of a cypovirus (Reoviridae) from the mosquito Uranotaenia sapphirina (Diptera: Culicidae). Journal of Virology 79(15): 9430-9438.

Snell, A.E. 2005. Identification keys to larval and adult female mosquitoes (Diptera: Culicidae) of New Zealand. New Zealand Journal of Zooogy 32(2): 99-110.

Tabachnick, W. 2010. Challenges in predicting climate and environmental effects on vector-borne disease ecosystems in a changing world. Journal of Experimental Biology, 213(6): 946-954.

Ukubuiwe, A.C. Olayemi, I.K. & Jibrin, A.I. 2016. Genetic variations in bionomics of Culex quinquefasciatus (Diptera: Culicidae) mosquito population in Minna, North Central Nigeria. International Journal of Insect Science 8: S32516.

Ukubuiwe, A.C., Olayemi, K.I., Omalu, I.C., Odeyemi, M.O., Jibrin, A.I. & Usman-oyibo, K. A. 2012. Comparative assessment of immature survivorship and developmental duration of Culex pipiens pipiens (Diptera: Culicidae) Mosquito Vector Populations in North Central Nigeria. Biomed Central Epidemiology 3(10): WMC003753.

Wang, J.-N., Hou, J., Zhong, J.-Y., Cao, G.-P., Yu, Z.-Y., Wu, Y.-Y., et al. & Gong, Z.-Y. 2020a. Relationships between traditional larval indices and meteorological factors with the adult density of Aedes albopictus captured by BG-mosquito trap. PloSOne 15(6): e0234555.

Wang, Y., Cheng, P., Jiao, B., Song, X., Wang, H., Wang, H., et al. & Gong, M. 2020b. Investigation of mosquito larval habitats and insecticide resistance in an area with a high incidence of mosquito-borne diseases in Jining, Shandong Province. PloSOne 15(3): e0229764.

Wilke, A.B., Vasquez, C., Carvajal, A., Moreno, M., Fuller, D.O., Cardenas, G., et al. & Beier, J.C. 2021. Urbanization favors the proliferation of Aedes aegypti and Culex quinquefasciatus in urban areas of Miami-Dade County, Florida. Scientific Reports 11(1): 1-12.


Refbacks

  • There are currently no refbacks.