THE POTENTIAL OF THERMOPHILIC CHITINOLYTIC BACTERIA IE JUE, ACEH, INDONESIA AS LARVICIDE OF Helicoverpa armigera (HÜBNER)

Lenni Fitri, Deby Liestia Anggi, Yekki Yasmin

Abstract


This study aims to determine the potential of local isolate thermophilic chitinolytic bacteria as larvicide of Helicoverpa armigera (Hübner). The bacteria that have been isolated from hot springs Ie Jue, Aceh Besar, were then characterized morphologically and tested for their larvicidal potential against the larvae of H. armigera. The parameters observed include the number of chitinolytic bacterial isolates as well as their morphological characteristics, the number of dead larvae, the number of larvae developing into pupae, and morphological characteristics of the larvae before and after the treatment with chitinolytic bacteria. The results of morphological characterization showed that the isolates obtained were seven Gram-positive isolates and four Gram-negative isolates, as well as nine isolates in the form of bacilli, while one isolate of diplococci and diplobasil were each. The highest ability of isolate in causing larval mortality was shown by IBK1, which killed approximately 2.67 (67%) individuals of the larvae, while IBK6 and IBK9 showed the lowest ability in causing larval mortality with average larval mortality of 0.33 (8%) individuals. On the other hand, the number of larvae that are able to develop into pupae is mostly found in IBK 6 and IBK 9, while the fewest are found in IBK 1. After the treatment with the bacteria, the morphology of the larvae body was found to be brown to black, soft, runny, crushed, and smelly. The potential use as larvicides to control H. armigera larvae has been proven in this study that isolated from thermophilic chitinolytic bacteria.


Full Text:

PDF

References


Adam, T., Juliana, R., Nurhayati & Thalib, R. 2014. Bioessay of Bacillus thuringiensis Berliner bioinsecticide against Spodoptera litura Fabricius. Prosiding Seminar Nasional Lahan Suboptimal 74: 1-7.

Adamo, S.A., Fidler, T.L., & Forestell, C.A. 2007. Illness-induced anorexia and its possible function in the caterpillar, Manduca sexta. Brain, behavior, and immunity 21(3): 292-300.

Adamo, S.A., Bartlett, A., Le, J., Spencer, N. & Sullivan, K. 2010. Illness-induced anorexia may reduce trade-offs between digestion and immune function. Animal Behaviour 79(1): 3-10.

Adnan, A.M. & Handayani. 2010. Predation ability of earwigs (Euborellia annulata Fabricus) against the Corn Borer Helicoverpa armigera (Hübner). Prosiding Pekan Serealia Nasiona, pp. 380-388.

Ardani, F., Yasmin, Y. & Fitri, L. 2012. Potential of Isolate Chitinolitic Bacteria from Hot springs, as Biological Control of Aedes aegypti L larva. Jurnal Biologi Edukasi 4(2): 77-81.

Bahagiawati, A. 2002. Bacillus thuringiensis application as a Bioinsecticide. Buletin Agrobio 5(1): 21-28.

Balfas, R. & Willis, M. 2009. Effect of Medicinal Plants Extract on Mortality and Survival of Spodoptera litura F. (Lepidoptera, Noctuidae). Buletin Penelitian Tanaman Rempah dan Obat 20(2): 148-156.

Berini, F., Caccia, S., Franzetti, E., Congiu, T., Marinelli, F., Casartelli, M. & Tettamanti, G. 2016. Effects of Trichoderma viride chitinases on the peritrophic matrix of Lepidoptera. Pest management science 72(5): 980-989.

Budin, G., Chung, H.J., Lee, H. & Weissleder, R. 2012. A magnetic Gram stain for bacterial detection. Angewandte Chemie 124(31): 7872-7875.

Cappucino, J.G. & Sherman, N. 2002. Microbiology: A Laboratory Manual. San Fransisco: The Benjamin Cummings Publishing Company.

Czepak, C., Albernaz, K.C., Vivan, L.M., Guimarães, H.O. & Carvalhais, T. 2013. First reported occurrence of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in Brazil. Pesquisa Agropecuária Tropical 43: 110-113.

Fadhullah, A.A., Hoesain, M. &Haryadi, N.T. 2015. Application of bioinseticide for controlling pest Spodoptera litura, Helicoverpa spp., Cyrtopeltis tenuis on tobacco (in Indonesian). Berkala Ilmiah Pertanian 1(1): 1-6.

Fitri, L. & Yasmin, Y. Isolation of chitinolytic bacteria from Hot Springs Ie Suum Masjid Raya District, Aceh Besar District, Aceh. Prosiding Seminar Nasional Biologi, Medan, 13 April 2013.

Fitri, L. & Yasmin, Y. 2014. The Potential of local chitinolitic bacteria isolates as larvacide of Aedesa egypti L. Makara Journal of Health Research 18: 1-6.

Ginting, S., Zarkani, A., Wibowo, R.H. & Sipriyadi, S. 2020. New invasive pest, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) attacking corn in Bengkulu, Indonesia. Serangga 25 (1): 105-117.

Ginting, Y. 2009. Bacterial isolation and thermophile amylase activity test from the spirit of hot springs of North Sumatra Mountain. Thesis. USU, Medan.

Glare, T.R., Jurat-Fuentes, J.L. & O'Callaghan, M. 2017. Basic and applied research: Entomopathogenic bacteria. In Lacey L. A. (ed.). Microbial Control of Insect And Mite Pests, pp. 47-67. San Diego: Elsevier Academic Press Inc.

Götz, P. 1972. “Rickettsiella chironomi”: An unusual bacterial pathogen which reproduces by multiple cell division. Journal of Invertebrate Pathology 20(1): 22-30.

Hadioetomo, R.S. 1993. Basic Microbiology in Practice. Jakarta: Gramedia. [in Indonesian].

Herdyastuti, N., Raharjo, T.J., Mudasir & Matsjeh. S. 2009. Chitinase and chitinolytic microorganism: Isolation, characterization and potential. Indonesian Journal of Chemistry 9(1): 37-47.

Herlinda, S. 2005. Bio-Ecology of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) on tomato. Agria 2(1): 32-36.

Javar, S., Sajap, A.S., Mohamed, R., & Hong, L.W. 2013. Suitability of Centella asiatica (Pegaga) as a food source for rearing Spodoptera litura (F.) (Lepidoptera: Noctuidae) under laboratory conditions. Journal of Plant Protection Research 53(2): 184-189.

Kalshoven, L.G.E. 1981. Pests of Crops in Indonesia. Jakarta: PT Ichtiar Baru Van-Hoeve.

Krishanti, N.P.R.A., Wikantyoso, B., Zulfitri, A. & Zulfiana, D. 2017. Entomopathogenic bacteria as biocontrol agent against Spodoptera litura (F.) larvae. Jurnal Ilmu-Ilmu Hayati, 16(1): 1-110.

Lay, B.W. 1994. Analisis Mikroba di Laboratorium. Jakarta: PT Raja Grafindo Persada.

Liu, P., Cheng, D. & Miao, L. 2015. Characterization of thermotolerant chitinases encoded by a Brevibacillus laterosporus strain isolated from a suburban wetland. Genes 6(4): 1268-1282.

Matsumoto, K.S. 2006. Fungal chitinases. Advancess in Agricultural and Food Biotechnology 6: 289-304.

Musser, R.O., Hum-Musser, S.M., Eichenseer, H., Peiffer, M., Ervin, G., Murphy, J.B. & Felton, G.W. 2002. Caterpillar saliva beats plant defences. Nature 416 (6881): 599-600.

Nafisah, H., Pujiyanto, S. & Raharjo, B. 2017. Isolation and testing of chitinase activity of bacterial isolates from the Dieng geothermal area. Bioma: Berkala Ilmiah Biologi 19(1): 22-29.

Nasran, S. & Ariyani, F. 2003. Production of chitinase and chitin deacetylase from Vibrio harveyi. Jurnal Penelitian Perikanan Indonesia 9(5): 33-38.

Nufus, B.N. & Tresnani, G. 2016. Populations of normal bacteria and chitinolytic bacteria in the digestive tract of sand lobster (Panulirus homarus L.) given chitosan. Jurnal Biologi Tropis 16(1): 15-23.

Pelczar, M.J. & Chan, E.C.S. 2005. Fundamentals of Microbiology 1. Jakarta: Figures Universitas Indonesia Press.

Pitri, R.E., Agustien, A. & Febria, F.A. 2015. Isolation and characterization of amilothermophilic bacteria from Sungai Medang Hotspring. Jurnal Biologi Universitas Andalas 4(2): 119‒122.

Priyatno, T.P., Dahliani, Y.A., Suryadi, Y., Samudera, I.M., Susilowati, D.N., Rusmana, I., Wibowo, B.S. & Irwan, C. 2011. Identification of red bacterial entomopathogens on brown planthopper (Nilaparvata lugens Stål). Jurnal Agro Biogen 7: 85-95.

Pujiyanto, S., Kusdiyantini, E., Hadi, M. 2008. Isolation and selection of local isolates of chitinolytic bacteria that have the potential to control Aedes aegypti L. mosquito larvae. Biodiversitas 9(1): 5-8.

Purwoko, T. 2007. Fisiologi Mikroba. Jakarta: Bumi Aksara.

Tampubolon, D.Y., Pangestiningsih, Y., Zahara, F. & Manik, F. 2013. Pathogenicity test of Bacillus thuringiensis and Metarhizium anisopliae against mortality of Spodoptera litura Fabr (Lepidoptera: Noctuidae) in laboratorium. Jurnal Online Agroekoteknologi 1: 783-793.

Terra, W.R. & Ferreira, C. 2005. Biochemistry of digestion. In Gilbert, L.I., Iatrou, K. & Gill, S.S. (eds.), pp. 171-224, Comprehensive Molecular Insect Science Biochemistry and Molecular Biology. Oxford, UK: Elsevier.

Thamthiankul, S., Suan-Ngay, S., Tantimavanich, S. & Panbangred, W. 2001. Chitinase from Bacillus thuringiensis subsp. Pakistani. Applied Microbiology and Biotechnology 56: 394-401.

Vachon, V., Laprade, R. & Schwartz, J. 2012. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: A critical review. Journal of Invertebrate Pathology 111: 1–12.

Wangsa, A. & Ismail, N. 2018. Quantitative interpretation of gravity anomaly data in geothermal field Seulawah Agam, Aceh Besar. Journal of Aceh Physics Society 7(1): 6-12.

Wineri, E., Rasyid, R. & Alios, Y. 2014. Comparison of inhibitory power of natural honey and packaged honey in vitro against streptococcus beta hemolyticus group a as the cause of pharyngitis. Jurnal Kesehatan Andalas 3: 376-380.

Yamashita, S., Katayama, H., Saitoh, H., Akao, T., Park, Y. S., Mizuki, E. & Ito, A. 2005. Typical three-domain cry proteins of Bacillus thuringiensis strain A1462 exhibit cytocidal activity on limited human cancer cells. Journal of biochemistry 138(6): 663-672.

Yuniarti, R.A. & Blondine, C.P. 2005. The effectivity of vectobac and misocyclops aspericornis predator as a biological control agent of Aedes aegypti larvae in water jars. Kedokteran Yarsi 13(1): 102-110.

Zulfiana, D., Krishanti, N.P.R.A., Wikantyoso, B. & Zulfitri, A. 2017. Entomopathogenic bacteria as biocontrol agent against Spodoptera litura (F.) larvae. Jurnal Ilmu-Ilmu Hayati 16(1): 1-110.


Refbacks

  • There are currently no refbacks.