WING GEOMETRY ANALYSIS AS A POTENTIAL TOOL FOR SPECIES IDENTIFICATION FOR Anopheles MOSQUITOES (DIPTERA: CULICIDAE) IN INDONESIA

Sidiq Setyo Nugroho, Mujiyono Mujiyono, Sapto Prihasto Siswoko, Arif Suryo Prasetyo, Triwibowo Ambar Garjito

Abstract


In the last decade, wing geometry has been investigated intensively as an alternative powerful method for solving taxonomic problems in insects. The objectives of this research were to describe wing geometry variation among seven Anopheles species and confirm the sensitivity of wing geometry analysis for identifying single specimen of Anopheles mosquito. Thus, the potential of wing geometry analysis as an alternative tool for species identification for Anopheles mosquitoes can be recognized. Left wing of seven Anopheles species were detached and photographed. Wing geometry was represented by 18 landmarks (LMs). Wing geometry analysis was conducted by MorphoJ and tps software series. Comparison among species and identification simulation were done using canonical variate analysis (CVA). Wing geometry was successfully discriminated and grouped seven Anopheles species into correct subgenera and series. This method also gave good results in identifying single specimen. Nine out of 11 specimens (81, 8%) obtained identification results that match their phylogenetic relationships. Weakness using wing geometry in species identification can be overcome by adding template species. In conclusion, wing geometry analysis has good potential to be used as an alternative tool for species identification for Anopheles mosquito in Indonesia.


Full Text:

PDF

References


Börstler, J., Lühken, R., Rudolf, M., Steinke, S., Melaun, C., Becker, S., Garms, R. & Kruger, A. 2014. The use of morphometric wing characters to discriminate female Culex pipiens and Culex torrentium. Journal of Vector Ecology 39:204–212.

Calle, D. A., Quiñones, M. L., Erazo, H. F. & Jaramillo, N. 2008. Discrimination by geometrical morphometry of eleven species of Anopheles (Nyssorhynchus) present in Colombia. Biomédica 28:371–385.

Collucci, E. & Sallum, M. A. M. 2003. Phylogenetic analysis of the subgenus Kerteszia of Anopheles (Diptera: Culicidae: Anophelinae) based on morphological characters. Insect Systematics and Evolution 34:361–372.

Dujardin, J. P. 2008. Morphometrics applied to medical entomology. Infection, Genetics and Evolution 8:875–890.

Elyazar, I. R. F., Sinka, M. E., Gething, P. W., Tarmidzi, S. N., Surya, A., Kusriastuti R., Winarno, Baird, J. K., Hay, S. I. & Bangs M. J. 2013. The distribution and bionomics of Anopheles malaria vector mosquitoes in Indonesia. Advances in Parasitology 83: 173-266.

Gómez, G., Jaramillo, L. & Correa, M. M. 2013. Wing geometric morphometrics and molecular assessment of members in the Albitarsis Complex from Colombia. Molecular Ecology Resources 13:1082–1092.

Gómez, G. F., Márquez, E. J., Gutiérrez, L. A., Conn, J. E. & Correa, M. M. 2014. Geometric morphometric analysis of Colombian Anopheles albimanus (Diptera: Culicidae) reveals significant effect of environmental factors on wing traits and presence of a metapopulation. Acta Tropica 135:75–85.

Hakim, L. 2011. Malaria: Epidemiology and diagnostic. Aspirator 3:107–116.

Harbach, R. E. 2013. The phylogeny and classification of Anopheles. InTech 55: 367–376.

Harbach, R. E. & Kitching, I. J. 1998. Phylogeny and classification of the Culicidae (Diptera). Systematic Entomology 23:327–370.

Harbach, R. E. & Kitching, I. J. 2015. The phylogeny of Anophelinae revisited: Inferences about the origin and classification of Anopheles (Diptera: Culicidae). Zoologica Scripta 45:34–47.

Henry, A., Thongsripong, P., Fonseca-Gonzalez, I., Jaramillo-Ocampo, N. & Dujardin, J. P. 2010. Wing shape of dengue vectors from around the world. Infection, Genetics and Evolution 10:207–214.

Jaramillo-O, N., Dujardin, J. P., Calle-Londoño, D. & Fonseca-González, I. 2014. Geometric morphometrics for the taxonomy of 11 species of Anopheles (Nyssorhynchus) mosquitoes. Medical and Veterinary Entomology 29:26–36.

Kaba, D., Berté, D., Ta, B. T. D., Tellería, J., Solano, P. & Dujardin, J. P. 2016. The wing venation patterns to identify single tsetse flies. Infection, Genetics and Evolution 47: 132-139.

Klingenberg, C. P. 2010. Evolution and development of shape: Integrating quantitative approaches. Nature Reviews Genetics 11:623–635.

Klingenberg, C. P. 2011. MorphoJ: An integrated software package for geometric morphometrics. Molecular Ecology Resources 11:353–357.

Laurito, M., Almirón, W. R. & Ludueña-Almeida, F. F. 2015. Discrimination of four Culex (Culex) species from the Neotropics based on geometric morphometrics. Zoomorphology 134:447–455.

Lorenz, C., Marques, T. C., Sallum, M. A. M. & Suesdek, L. 2012. Morphometrical diagnosis of the malaria vectors Anopheles cruzii, An. homunculus and An. bellator. Parasites & Vectors 5:257.

Mondal, R., Devi, P. N. & Jauhari, R. K. 2015. Landmark-based geometric morphometric analysis of wing shape among certain species of Aedes mosquitoes in District Dehradun (Uttarakhand), India. Journal of Vector Borne Diseases 52:122–128.

Mountcastle, A. M. & Combes, S. A. 2013. Wing flexibility enhances load-lifting capacity in bumblebees. Proceedings of the Royal Society B: Biological Sciences 280:1–8.

Ng, S. H., Homathevi, R. & Chua, T. H. 2016. Mosquitoes of Kudat: Species composition and their medical importance (Diptera: Culicidae). Serangga21:149–162.

O’Connor, C. T. & Soepanto, A. 1999. Kunci Bergambar Nyamuk Anopheles di Indonesia. Jakarta: Ditjen P2M & PLP.

O’Connor, C. T. & Sopa, T. 1981. A checklist of the Mosquitoes of Indonesia. Jakarta: U.S. Naval Medical Research Unit No. 2 (NAMRU-SP-4.).

Pusdatin. 2016. Malaria data and information. Infodatin malaria. Pusdatin Kemenkes.

https://www.kemkes.go.id/download.php?file=download/pusdatin/infodatin/InfoDatin-Malaria-2016.pdf. [8 January 2018].

Rohlf, F. J. 2015. The tps series of software. Hystrix 26:1–4.

Sendaydiego, J. P. & Demayo, C. G. 2015. Describing variations in wing shapes of Anopheles flavirostris detected positive and negative of filaria using relative warp and Euclidean distance matrix analysis. International Journal of Mosquito Research 2:9–13.

Sitohang, V., Sariwati, E., Fajariyani, S. B., Hwang, D., Kurnia, B., Hapsari, R. K., Laihad, F. J., Sumiwi, M. E., Pronyk, P. & Hawley, W. A. 2018. Malaria elimination in Indonesia: Halfway there. The Lancet Global Health 6:604–606.

Vicente, J. L., Sousa, C. A., Alten, B., Caglar, S. S., Falcuta, E., Latorre, J. M., Toty, C., Barre, H., Demirci, B., Di Luca, M., Toma, L., Alves, R., Salgueiro, P., Silva, T. L., Bargues, M. D., Mas-Coma, S., Boccolini, D., Romi, R., Nicolescu, G., do Rosario, V.E., Ozer, N., Fontenille, D. & Pinto J. 2011. Genetic and phenotypic variation of the malaria vector Anopheles atroparvus in southern Europe. Malaria journal 10:5.

Vidal, P. O., Peruzin, M. C. & Suesdek, L. 2011. Wing diagnostic characters for Culex quinquefasciatus and Culex nigripalpus (Diptera, Culicidae). Revista Brasileira de Entomologia 55:134–137.

Wilke, A. B. B., Christe, R. O., Multini, L. C., Vidal, P. O., Wilk-da-Silva, R., de Carvalho, G. C. & Marrelli, M. T. 2016. Morphometric wing characters as a tool for mosquito identification. PLoS ONE 11:1–12.

Young, J., Walker, S. M., Bomphrey, R. J., Taylor, G. K. & Thomas, A. L. R. 2009. Details of insect wing design and deformation enhace aerodynamic function and flight efficiency. Science325(5947):1549-52.


Refbacks

  • There are currently no refbacks.