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ABSTRACT 

 

The xenobiotics including insecticides such as malathion and permethrin induce the activities 

of detoxification enzymes and potentially leading to the development of resistance. In this 

study, biochemical analysis was used to characterize the time-dependent malathion and 

permethrin induction profile of Glutathione S-transferase (GST), α-esterase (α-est), β-esterase 

(β-est), Cytochrome P450 (Cyt P450) and Acetylcholinesterase (AChE), enzymes which are 

known to contribute to metabolic resistance in Aedes albopictus. Time-dependent induction of 

early fourth instar larvae with the sub-lethal concentration (LC50) of malathion (0.099 mg/L) 

and permethrin (0.0023 mg/L) was done at 6, 12 and 24 hours to observe the effect on the 

enzymatic activity under toxicological challenges. Total protein content of larvae was most 

elevated when the larvae were exposed to both insecticides for 24 hours. The level of total 

enzyme activity and specific activity of GST, as well as Cyt P450 were found to be most 

elevated whereas the level of α-est and β-est total enzyme and specific activity were decreased 

at 24 hours of treatment with malathion. A different pattern was observed for permethrin 

induction whereby the total enzyme and specific activity of all enzymes except Cyt P450 were 

highly elevated upon 24 hours of acute exposure. The level of total enzyme activity and specific 

activity of almost all enzymes upon acute induction with malathion and permethrin were 

statistically significant (p˂0.05) when compared between the induced hours and to its 

susceptible strain. Conclusively, these findings indicate that the continuous and prolonged 

exposure to sub-lethal concentration of malathion and permethrin influenced the induction of 

GST, α-est, β-est, Cyt P450 as well as AChE enzymatic activities.   

 

Keywords: Aedes albopictus, detoxification enzymes, enzymatic activities, metabolic 

induction, xenobiotic challenge. 

 

ABSTRAK 

 

Insektisid seperti malation dan permetrin ialah xenobiotik yang menggalakkan aktiviti enzim 

pengnyahtoksikan dan berpotensi untuk menyebabkan perkembangan kerintangan metabolik. 

Dalam kajian ini, analisis biokimia telah dijalankan untuk mengelaskan profil induksi enzim 

(GST, α-est, β-est, Cyt P450 dan AChE) yang menyumbang kepada kerintangan metabolik 
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Aedes albopictus apabila didedahkan secara berkala dengan malation dan permetrin. Proses 

pendedahan akut secara berkala untuk instar keempat larva Ae. albopictus dengan dos subletal 

(LC50) malation (0.099 mg/L) dan permetrin (0.023 mg/L) dijalankan selama 6 jam, 12 jam 

dan 24 jam untuk memerhatikan tindak balas aktiviti enzim apabila didedahkan dengan cabaran 

toksik insektisid. Jumlah kandungan protein larva yang paling tinggi dicatatkan apabila larva 

didedahkan dengan dos subletal (LC50) malation dan permetrin selama 24 jam. Jumlah aktiviti 

enzim dan jumlah aktiviti khusus enzim GST, dan Cyt P450 didapati paling tinggi manakala 

α-est dan β-est mencatatkan nilai paling rendah setelah pendedahan akut dengan dos subletal 

(LC50) malation selama 24 jam. Corak aktiviti yang berbeza diperhatikan setelah pendedahan 

akut larva dengan dos subletal (LC50) permetrin selama 24 jam di mana jumlah aktiviti enzim 

dan jumlah aktiviti khusus enzim bagi kesemua enzim kecuali Cyt P450 berada di tahap yang 

paling tinggi. Walau bagaimanapun, setelah proses induksi dengan kedua insektisid, jumlah 

aktiviti enzim dan jumlah aktiviti khusus enzim khusus bagi kebanyakan enzim yang diuji 

memberikan perbezaan yang signifikan (p<0.05) apabila dibanding dengan masa induksi yang 

berbeza dan antara nilai kawalannya. Hasil kajian yang diperoleh menunjukkan bahawa 

pendedahan akut dengan malation dan permetrin yang berterusan dan berpanjangan akan 

mempengaruhi penghasilan dan aktiviti enzim GST, α-est, β-est, Cyt P450 dan AChE. 

 

Kata kunci: Aedes albopictus, enzim pengnyahtoksikan, aktiviti enzim, induksi metabolik, 

tekanan xenobiotik 

 

INTRODUCTION 

 

Aedes albopictus mosquito, also known as Asian tiger mosquito, originates from Southeast 

Asia and is responsible for the transmission of arboviral as well as filarial infectious diseases 

of humans and animals (Gratz 2004; Grigoraki et al. 2015). Apart from its ability to transmit a 

broad spectrum of human pathogens, Ae. albopictus also acts as the secondary vector of dengue 

virus in Malaysia (Caminade et al. 2012; Chua et al. 2005; Rozilawati et al. 2017; WHO 2009). 

Due to the unavailability of a stable vaccine for the treatment of dengue, the predominant global 

strategy to reduce the occurrence of Dengue Fever or Dengue Hemorrhagic Fever cases and 

ultimately control Aedes mosquito abundance is focused on the control of immatures as well 

as adult mosquitoes (El-garj et al. 2015; Farouk et al. 2019; Guzman et al. 2010; Liu et al. 

2006; Sabchareon et al. 2012; Wan-Norafikah et al. 2013). 

 

 Prevention of transmission is crucial to reduce the burden of dengue, and the only 

available strategy is by controlling Aedes mosquitoes (Vanlerberghe et al. 2009). Control of 

Ae. albopictus relies on the usage of insecticides, source reduction of larval breeding sites as 

well as the usage of repellents (Grigoraki et al. 2015; Koou et al. 2014; Smith et al. 2016; Wan-

Norafikah et al. 2013). Pyrethroids and organophosphates are some of the insecticides used to 

control the population of adult mosquitoes in disease affected areas due to its effectiveness 

(Davies et al. 2007; Smith et al. 2016; Wan-Norafikah et al. 2013). Unfortunately, the 

prolonged intensive as well as extensive usage of insecticides inevitably leads to resistance 

towards insecticides and this is developing at an alarming rate (Sokhna et al. 2013; Pang & Loh 

2016; Paiva et al. 2016; Wan-Norafikah et al. 2013). Among the other factors compromising 

vector control efforts are the selection pressure of insecticides and the inheritability of 

resistance among generations of vector populations (Li et al. 2007). Reports of resistance cases 

involving Ae. albopictus are increasing even though the amount of cases is less compared to 

Ae. aegypti (Ishak et al. 2016). There are four types of insecticide resistance mechanisms which 

have been developed and exhibited by mosquitoes namely metabolic-based resistance, target-
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site resistance, physiological resistance and behavioural resistance (Brogdon & McAllister 

1998; Hemingway et al. 2004; Kasai et al. 2014).  

 

 The biosynthesis of enzymes has been suggested to occur as a result of a direct reaction 

when exposed to xenobiotics (Poupardin et al. 2008). Evolution of xenobiotic resistance in 

insects happens primarily by increasing the metabolic capability of detoxification systems 

and/or reducing the sensitivity of xenobiotic target site (Li et al. 2007). Metabolic based 

resistance occurs when increased rate of insecticide metabolism lowers the quantity of 

insecticide reaching the target site (Ranson et al. 2011; Paiva et al. 2016). The most familiar 

metabolic resistance mechanisms involve four main enzymes namely glutathione s-

transferases, α-est and β-est, Cyt P450 as well as AChE (Amelia-Yap et al. 2018; El-garj et al. 

2016ab; Ngoagouni et al. 2016; Paiva et al. 2016). Understanding the underlying insecticide 

resistance mechanism is crucial for the development of an effective yet sustainable integrated 

vector control programs (Grigoraki et al. 2015). Therefore, the aims of the present study are to 

verify the effect of acute time-dependent treatment with LC50 of permethrin and malathion on 

the induction of total protein content, total enzyme activity as well as specific enzyme activity 

in Ae. albopictus larvae to determine the mechanisms of toxicological challenge in the larvae.  

 

MATERIALS AND METHODS 

 

Mosquitoes and Insecticides Treatment 

An established laboratory colony (susceptible strain) of Ae. albopictus was supplied by Vector 

Control Research Unit (VCRU), Universiti Sains Malaysia. Early fourth instar of susceptible 

laboratory strain of Ae. albopictus larvae were subjected to baseline toxicity testing according 

to diagnostic determination protocol used by WHO (1981, 2005). Malathion 

(organophosphate) and permethrin (pyrethroid) were selected to be used in this study because 

both insecticides are the primary choice of insecticides applied in the vector control programs 

in Malaysia (Hamzah et al. 2019; Rozilawati et al. 2017).   

 

 In all experiments, preliminary tests were conducted to determine LC50 dosages of 

malathion and permethrin according to WHO standard procedure (WHO 2005). Five 

concentrations (treatments) of each insecticide were used to determine concentration with a 

mortality range of 15% to 95%. A minimum of eight replicates (25 larvae each) per treatment 

were performed with each concentration. The data were analysed using probit analysis (SPSS 

software version 24) in order to determine the lethal concentration required to kill 50% of the 

larvae (LC50). Then, the fourth instar larvae were exposed to the insecticides according to its 

LC50 value at different time durations namely 6, 12 and 24 hours. All treated larvae were 

collected and used for further analysis. 

 

Protein Concentration 

The protein concentration in the enzyme source for all biochemical assays was determined 

according to Bradford (1976) using Coomassie Brilliant Blue R-250. Bovine serum albumin 

was used as a standard to normalize the protein activities (Hamzah & Alias 2016a). 

 

Enzyme Assays  

Early fourth instar larvae were individually homogenized in 200 μl of season water on ice. 25 

μl of homogenate were used for the AChE assay. The rest of the homogenate were centrifuged 

at 14,000 rpm, 4°C for 30 seconds, and the supernatant was used as a source of enzyme for all 

biochemical enzyme assays in this research. At total of 100 replicates were used per assay. All 
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of the assays were performed according to Hemingway (1998) which adheres to WHO 

procedure.  

 

Acetylcholinesterase (AChE) assay 

For each sample, 25 μl of insect homogenate was mixed with 145 μl of triton phosphate buffer. 

Then, 10 μl of 0.01 M dithiobis 2-nitrobenzoic acid solution and 25 μl of 0.01 M 

acetylthiocholine iodide were added to initiate the reaction. Two similar reactions were 

prepared for each sample. One reaction was allowed to progress, the other was inhibited using 

0.05 μl of 0.1 M propoxur. After one hour of incubation, the Optical Density (OD) of both 

reactions were measured at 405 nm. Specific AChE activity was calculated according to Beer's 

Law (A = ϵcl) and expressed as nmol of AChE/min/mg. 

 

Non-specific esterases (α-est andβ-est) Assay 

For each replicate, 20 μl of supernatant extracted from the insect homogenate were mixed with 

200 μl of the substrate, 30 mM α-naphthyl acetate. At the same time, another 20 μl of 

supernatant from the same sample were also incubated with 200 μl of 30 mM β-naphthyl 

acetate. 50 μl of fast blue stain was added to each reaction after 15 minutes of incubation and 

the OD value was measured at 570 nm. The activity against each substrate was calculated from 

standard curves of absorbance for known concentrations of α-naphthol or β-naphthol. Enzyme 

activities were expressed as nmol of α-naphthol or β-naphthol/min/mg protein. 

 

Glutathione s-transferase (GST) assay 

A sum of 200 μl of 10 mM reduced glutathione (GSH) and 63 mM 1-chloro-2,4-dinitrobenzene 

(CDNB) mixture were added to 10 μl of supernatant which were extracted from the insect 

homogenate. Absorbance was determined at 340 nm after 20 minutes of incubation. The OD 

value (A) was transformed to μmol of CDNB conjugates using the extinction coefficient (ϵ) of 

9.6 mM−1. GST activity was calculated according to Beer's Law (A = ϵcl) and reported as μmol 

of CDNB/min/mg protein. 

 

Cytochrome P450 (Cyt P450) titration assay 

80 μl of 0.625 M potassium phosphate buffer (pH 7.2), 200 μl of 3,3’,5,5’-tetramethylbenzidine 

(TMBZ) in methanol solution, and 25 μl of hydrogen peroxide (3%) were added to 2 μl of 

supernatant derived from the insect homogenate to initiate its activity. The reaction was 

allowed to oxidize for 2 hours at room temperature before the OD value was read at 650 nm. 

Cytochrome P450 activity was calculated from standard curve of absorbance for known 

concentration of cytochrome C (Brogdon & McAllister 1997). Enzyme activity was expressed 

as nmol equivalent units of cytochrome P450/min/mg protein. 

 

Statistical Analysis 

The data obtained in diagnostic bioassays were statistically analysed by using probit analysis 

computer program SPSS (version 24) to determine the LC50 values to be used as the standard 

dosages for this study. One-way analysis of variance (ANOVA) was used to compare the total 

protein content, total and specific enzyme activity levels of each enzyme between different 

time-dependent insecticide-induced strains including the non-induced susceptible strain as a 

control, at P=0.05.  
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RESULTS 

 

Results obtained from probit analysis are presented in Table 1. From the larval bioassay, the 

LC50 of malathion established was 0.099 mg/L (0.090-0.108) while the LC50 of permethrin is 

0.023 mg/L (0.019-0.027). 

 

 

Table 1. Sub-lethal (LC50) doses of susceptible Aedes albopictus larvae against 

permethrin and malathion. 

 Population LC50 (95% CI) mg/L Slope±SD 

Permethrin Susceptible 0.023 (0.019-0.027) 3.692±0.228 

Malathion Susceptible  0.099 (0.090-0.108) 3.482±0.223 

 

 

 Figure 1 indicated the changes in the total protein content (µg) of larvae upon acute 

treatment with either malathion or permethrin. Results represent the mean of at least ten 

separate experiments. Comparison by using 1-way ANOVA was made between each treated 

hour respectively and to its control from the same insecticide only. Protein content with same 

letters show significant difference at p=0.05. Upon acute treatment with malathion and 

permethrin, the total protein content of larvae was at its highest peak at 24 hours of the acute 

treatment (p<0.05). Cumulatively, there was a significant difference (p˂0.05) in the total 

protein content of larvae upon acute treatment with malathion as well as permethrin when 

compared between the treated hours and to the control respectively.  

 

 

Figure 1. Total protein content (μg) upon different time inductions within the same 

insecticide treatment (malathion or permethrin).  
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Results represent the averages of at least three separate experiments + standard error. 

Protein content with same letters for each type of insecticide treatment show significant 

difference at p=0.05. LC₅₀ is the dosage resulting in 50% mortality of test insecticides. 

 

 Based on the data summarized in Table 2, total GST activity was most elevated at 12 

hours and 24 hours of acute treatment with malathion, (p<0.05). Comparison by using 1-way 

ANOVA was made between all induced hours and from the same treatment only, p=0.05.  

 

 Total α-est activity reduced consistently from 6 hours up to 24 hours (p<0.05), while 

total β-est activity increased after 6 hours of acute malathion treatment (p<0.05) and then 

reduced comparatively until 24 hours of acute malathion treatment (p<0.05). Total Cyt P450 

activity increased gradually upon acute treatment with malathion and was at the highest peak 

for 24 hours of exposure (p<0.05). A different pattern was observed for total AChE activity 

whereby the activity increased up to 12 hours and dropped at 24 hours of acute treatment 

(p<0.05).  

 

 The total GST, AChE, α-est and β-est activity was most elevated in larvae which has 

been acutely treated with permethrin for 24 hours while total Cyt P450 activity was most 

elevated during the 6th hour of acute treatment. Apart from that, the total enzyme activity of 

all test enzymes in acute permethrin treated larvae shows a significant difference (p˂0.05) 

when compared between different acute treated hours and to its respective control strain.  

  

In comparison, only GST activities for 12 hours and 24 hours (malathion treatment); 6 

hours and 12 hours (permethrin treatment) were not significant (p>0.05). 

 

 

Table 2. Mean of total enzyme activity ± SE upon time dependent acute treatment with 

LC₅₀ of malathion and permethrin 

Comparison was made between the induced hours of each treatment including its control from 

the same enzyme only. Total activity with same letters shows significant difference at p=0.05.  

 

 

 Both insecticide treatments on the larvae had significant effect (p<0.05) on the enzyme 

specific activities (Table 3). Highest level of GST and Cyt P450 specific activities were 

detected in larvae exposed to acute malathion treatment for 24 hours, while the specific α-est, 

β-est and AChE specific activities dropped comparatively during 24 hours of acute malathion 

treatment. Specific activity of α-est gradually decreased upon acute treatment with malathion 

and reached the lowest level at 24 hours of exposure. On the other hand, the specific activity 

of β-est as well as AChE increased upon 6 hours of exposure and then consistently decreased 

to the lowest level at 24 hours of acute malathion treatment. According to the results obtained 

Total 

activity/ 

insecticide 

Treatment 

duration 

GST 

(nmol/min) 

α-est 

(nmol/min) 

β-est 

(nmol/min) 

Cyt P450 

(nmol/min) 

AChE 

(nmol/min) 

Permethrin Control 

6 hours 

12 hours 

24 hours 

76±1a 

109±2b 

111±2b 

141±1c 

83±6a 

108±1b 

102±3c 

144±8d 

132±8a 

169±8b 

151±2c 

215±2d 

18±0.2a 

29±0.2b 

26±0.1c 

21±0.4d 

4.2±0.03a 

4.0±0.09b 

3.2±0.02c 

4.6±0.05d 

Malathion Control 

6 hours 

12 hours 

24 hours 

76±4ᵃ 

88±3ᵇ 

100±2ᶜ 

100±2ᶜ 

83±6a 

72±6b 

59±2c 

48±4d 

132±8a 

142±3b 

85±4c 

74±1d 

18±0.2a   

20±0.1b 

22±0.1c 

23±0.2d 

4.2±0.03a 

4.6±0.04b 

4.9±0.01c 

3.6±0.04d 
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from this study, the specific activity of GST showed no significant difference (p>0.05) upon 

comparison between different acute malathion treatment hours. Apart from that, the specific 

enzyme activity of all test enzymes of acute malathion treated larvae produced a significant 

difference (p˂0.05) when compared between different hours and the control. 

 

 Acute permethrin treatment resulted in a different response with the highest peak of 

specific activity observed on GST, α-est as well as β-est and the lowest peak for AChE and Cyt 

P450 specific activity was recorded at 24 hour of acute treatment. Similar response was 

detected in the specific activity of α-est as well as β-est whereby the activity increased at 6 hour 

of exposure, followed by a decrease at 12 hours and ultimately reaching the highest point at 24 

hour of acute treatment with permethrin. Specific activity of GST increases gradually at the 6 

hour of acute treatment with permethrin with the highest activity observed at the 24 hour. The 

specific activity of Cyt P450 was at the highest level at 6 hour of acute permethrin treatment 

and then decreased significantly to the lowest level at 24 hours. Meanwhile, the specific activity 

of AChE dropped upon acute treatment with permethrin until the 12 hour and increased at the 

24 hour of exposure. Collectively, specific enzyme activity of all enzymes in the acute 

permethrin treated larvae were statistically significant (p˂0.05) when compared between the 

acute treated hours and to its control respectively except for the specific GST activity between 

6 and 12 hours of acute permethrin treatment (p>0.05). 

 

 A varying degree of fold changes in total enzyme activity as well as specific activity 

was detected upon time dependent acute malathion and permethrin treatment.  

 

 

Table 3. Specific enzyme activity against time dependent acute treatment with LC₅₀ of 

malathion and permethrin.  

Comparison was made between the induced hours of each treatment including its control from 

the same enzyme only. The specific activity with same letters shows significant difference at 

p=0.05.  

 

 

DISCUSSIONS 

 

Elevation of protein content of larvae upon acute time-dependent treatment with two 

xenobiotics (permethrin and malathion) is suggested to occur due to an increase in metabolism 

under toxicant stress which is associated with a state of oxidative stress in induced larvae. The 

exposure to oxidative stress inducers (permethrin and malathion) may contribute to antioxidant 

defence by repairing the damaged secondary product generated by reactive oxygen species 

(ROS) (Hamzah & Alias 2016b; Ullah et al 2018; Wang et al. 2016).  

 

Specific 

activity / 

Insecticide 

Treatment 

duration 

GST 

μmol/min/mg 

α-est nmol of 1-

NA/min/mg 

β-est nmol of 2-

NA/min/mg 

Cyt P450 

nmol/min/mg 

AChE 

nmol/min/mg 

 

Permethrin Control 

6 hours 

12 hours 

24 hours 

1.947±0.08a 

2.427±0.05b 

2.541±0.12b 

2.635±0.08b 

74.73±0.62a 

82.58±0.34b 

80.68±0.48c 

91.36±0.70d 

65.65±0.56a 

74.27±0.42b 

67.71±0.48c 

80.50±0.96d 

6.32±0.08a 

9.61±0.05b 

8.68±0.04c 

7.23±0.13d 

1.68±0.02a 

1.46±0.01b 

1.19±0.03c 

1.44±0.01d 

Malathion Control 

6 hours 

12 hours 

24 hours 

1.947±0.08a 

2.397±0.09ᵇ 

2.360±0.06ᵇ 

2.502±0.05ᵇ 

74.73±0.62a 

70.25±0.62b 

52.09±0.28c 

46.68±0.39d 

65.65±0.56a 

75.68±0.64b 

38.67±0.22c 

35.47±0.64d 

6.32±0.08a 

6.97±0.02b 

7.44±0.04c 

7.78±0.06d 

1.68±0.02a 

2.01±0.02b 

1.92±0.02c 

1.37±0.00d 
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 Upon acute malathion treatment for 24 hours, a reduction in the fold change in the total 

and specific enzyme activity were detected in α-est and β-est. The result obtained in this 

research appear is contrary to another study by which elevated enzymatic activities was 

strongly associated to organophosphate resistance (Latif et al. 2010). Cytochrome P450 and 

Est are the enzymes involved in phase I of detoxification process whereby it is involved in the 

metabolism of insecticides by oxidation and hydrolysis respectively (Melo-Santos et al. 2010). 

The results obtained here suggest the likely involvement of Cyt P450 instead of Est in phase I 

of detoxification of malathion in this strain. In Malaysia, insensitive AChE was discovered in 

some field collected Ae. albopictus populations, indicating the emergence of organophosphate 

resistance (Chen et al. 2013). On the other hand, Mazzarri & Georghiou (1995) reported that 

there was no involvement of AChE enzymatic activity and ruled out its role in conferring 

organophosphate resistance in Ae. aegypti.  

 

 Elevation in the total and specific activity of Est upon acute permethrin treatment have 

been observed in this study. Several reports have been filed which revealed the involvement of 

Est enzymes in organophosphate as well as pyrethroid resistance (Amelia-Yap et al. 2018; 

Hemingway et al. 2004; Yaicharoen et al. 2005). In some cases, the role of Est in hydrolysing 

pyrethroids which leads to detoxification activities has been suggested to confer resistance in 

different species of mosquitoes (Emtithal & Thanaa 2012; Hemingway et al. 2004; Saelim et 

al. 2005; Somwang et al. 2011; Vulule et al. 1999).  

 

 The increment of total and specific enzymatic activity of GST upon acute permethrin 

treatment concur with a few previous reports regarding the role of GST enzyme activity in 

insecticide resistance particularly DDT as well as pyrethroids resistance (Dou et al. 2009; 

Enayati et al. 2005; Hamzah et al. 2019; Vontas et al. 2001). Apart from that, an increase in 

the production of GST has been reported to be one of the mechanism responsible in conferring 

resistance in insects including Ae. albopictus mosquitoes and are usually found to be elevated 

in pyrethroid and organophosphate -resistant strains (Hamzah & Alias 2016a; Lumjuan et al. 

2005; Lumjuan et al. 2011; Panini et al. 2016; Ranson et al. 2001; Wei et al. 2001; Yang et al. 

2009; Vulule et al. 1999).  

 

 Difference in the enzymatic activities of Cyt P450 have been detected upon acute 

permethrin treatment and can be related to several studies which have been conducted in 

Malaysia stating that detoxification activities involving changes in Cyt P450 monooxygenase 

activities are responsible for pyrethroid resistance in Ae. albopictus mosquitoes instead of 

knockdown resistance (kdr) mechanism (Avicor et al. 2014; Wan-Norafikah et al. 2013; Wan-

Norafikah et al. 2008). Other than that, previous studies revealed the correlation between the 

elevation of Cyt P450 enzyme activities and the level of insecticide resistance to 

organophosphate and permethrin (pyrethroid) (Avicor et al. 2014; Etang et al. 2007; Wan-

Norafikah et al. 2013; Yaicharoen et al. 2005).  

 

 Our results proof that there was more than one detoxification enzyme involved upon 

acute time-dependent malathion and permethrin treatment. Result obtained from this study is 

in agreement with earlier results by which the enhanced detoxification activity levels of 

metabolic enzymes such as GST, Est and AChE in the same mosquito population leads to the 

emergence of tolerance and ultimately insecticide resistance to all four classes of insecticides 

(Amelia-Yap et al. 2018; Montella et al. 2007; Smith et al. 2016). Elevated levels of Est and 

Cyt P450 activities were revealed in pyrethroid-resistant mosquitoes which highlight the role 

of more than one enzyme in conferring resistance (Liu et al. 2006). Other than that, different 
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resistance mechanisms can take place concurrently in resistant populations which ultimately 

results in resistance to one or more insecticides (Nkya et al. 2013). 

 

CONCLUSION 

 

Acute time-dependent xenobiotic (permethrin and malathion) induction on detoxification 

enzymes (GST, α-est, β-est, AChE and Cyt P450) of Ae. albopictus larvae altered its total and 

specific activity levels which indicates the possibility of enhancing the tolerance of Ae. 

albopictus to insecticides in the field. Apart from that, the results obtained from this research 

indicates that not only one enzyme is solely involved in the detoxification activities of 

malathion and permethrin upon acute treatment with the respective insecticides, but this could 

be due to the involvement of multiple metabolic enzymes.  
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