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ABSTRACT

Obesity is a growing epidemic due to an accelerated phase of industrialization and urbanization with the overfed people
now outnumbered the underfed. It is the major public health problem with a lot of research interest as it is associated
with many complicated chronic disorders such as type-2 diabetes, cardiovascular diseases (CvD) and cancers. A global
estimation of 2.8 million deaths per year is due to obesity and there are tremendous on-going efforts to identify hosts
and environmental factors that influence the cause and pathogenesis of obesity. Concerted efforts from different research
groups had successfully shown that obese subjects have altered composition of gut microbiota and transplantation of this
microbiota influences body weight in the germ-free recipient mice. The advancement of technology had made possible
the study of gut microbiota which was unculturable for better understanding of their impact to human health. Rapid
deep sequencing of DNA at reasonable cost through various options of platforms followed by data analysis using robust
bioinformatic tools are an important way of analysing the gut microbiome. Here we review the role of gut microbiota
which modulates host’s metabolic functions and gene expression, facilitating the extraction and storage of energy from the
ingested dietary substances and leading to body-weight gain. We will discuss on the different techniques used, focusing
on the high-definition technologies for the determination of the composition, function and ecology of gut microbiota. This
allows the appropriate selection of platform which becomes the key for success of subsequent research.

Keywords: Gut microbiota; obesity; metabolism; inflammations

ABSTRAK

Arus perindustrian dan pemodenan menjadikan obesiti sebagai suatu epidemik yang menular. Kini masyarakat yang
mengamalkan pengambilan makanan yang berlebihan mengatasi mereka yang kekurangan makanan. Penyelidikan
berkaitan obesiti kini menjadi tumpuan kajian memandangkan ia merupakan masalah utama kesihatan awam dan berkait
rapat dengan penyakit kronik seperti kencing manis jenis 2, penyakit kardiovaskular dan kanser. Dianggarkan kematian
yang berpunca dari masalah obesiti adalah sebanyak 2.8 juta orang di seluruh dunia dan pelbagai usaha sedang dilakukan
bagi mengenal pasti faktor-faktor perumah dan persekitaran yang mempengaruhi punca dan patogenesis masalah ini.
Usahasama dari beberapa penyelidikan telah membuktikan bahawa subjek yang obes mempunyai komposisi mikrobiota
usus yang berbeza dan pemindahan mikrobiota mempengaruhi berat badan tikus penerima yang bebas kuman. Kemajuan
teknologi membolehkan penyelidikan terhadap microbiota yang tidak boleh dikultur dan memberi pemahaman yang
lebih mengenai impak organisma ini terhadap kesihatan manusia. Penjujukan DNA secara terperinci dan cepat dengan
kos yang berpatutan melalui pelbagai platform disusuli penganalisaan data menggunakan bioinformatik yang moden
adalah penting bagi menganalisa mikrobiom usus. Di sini kami meneliti peranan mikrobiota usus dalam mengawal atur
fungsi metabolisma dan ekspresi gen perumah, membantu pengekstrakan dan penyimpanan tenaga dari makanan yang
diambil dan seterusnya menyebabkan peningkatan berat badan. Pelbagai teknik berdefinisi tinggi turut dibincangkan
di dalam pengenalpastian komposisi, fungsi dan ekologi mikrobiota usus. Ini akan dapat membantu dalam penggunaan
teknologi yang bersesuaian untuk kejayaan penyelidikan.

Kata kunci: Mikrobiota usus; obesiti; metabolism; keradangan

INTRODUCTION people (Power & Schulkin 2008). WHO data indicates that

currently, obesity affects at least 400 million people and it

With the current state of acceleration in industrialization 18 the fifth leading risk for global deaths worldwide. About
and urbanization, obesity has increased worldwide to the 65% of the world’s population lives in countries where
extent that those obese now outnumbered the malnourished ~ excess body weight kills more people than underweight
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(WHO 2012). Obesity is not classified as a single disorder
but currently characterized by a cluster of several metabolic
disorders such as cardiovascular diseases, type-2 diabetes
and cancers (WHO 2007; Sanz et al. 2010). Nevertheless,
the exact pathogenesis of obesity and its related diseases are
not well understood. Obesity is characterized by low grade,
but persistent inflammation with increased production of
cytokines and acute-phase reactants, such as C-reactive
protein (CRP) which eventually leads to insulin resistance
and metabolic syndrome (Wellen & Hotamisligil 2005).
Although excessive intake of energy-dense foods and a
sedentary lifestyle are often blamed for obesity epidemic,
there are emerging evidences pointing that gut microbiota
is also responsible for the gain of body weight (Shoelson
et al. 2007; Musso et al. 2010). Recent researches have
postulated that gut microbiota alter host energy metabolism
leading to adiposity and weight gain (Creely et al. 2006;
Cani et al. 2007; Samuel et al. 2008).

Until recently, our understanding on how gut
microbiota affects metabolic diseases is limited. The
specific bacteria populations and the altered metabolic
pathways which trigger the development of pathological
conditions are not well defined. The complexity of
gut microbial ecology and its impact on health can be
better understood by first knowing extensive coverage
of microbial population in the gut. Without advanced
technology, the data detailing microbial composition
somehow lack comprehensiveness. Development of the
non-culture-based analysis, such as metagenomics had
revolutionised the advancement of medical microbiology
in characterizing and identifying many clones which
corresponds to novel species of microorganisms. Through
metagenomics analysis, the full genome composition of
microbiomes, and unique microbial genes associated with
the microbiomes across the human body can be discovered.
In addition, metabolomics approach can help expand our
knowledge on the mechanisms that link gut microbiota
to adipogenesis in both physiological and pathological
condition of obesity (Turnbaugh et al. 2008).

In this review, we discuss the role of the gut microbiota
in energy metabolism and inflammation; and their possible
links with obesity and other metabolic disorders. We also
describe the different techniques that are used to unravel
the specific changes of the composition of gut microbiota
which affect or counteract the development of metabolic
disorders.

GUT MICROBIOTA

Gut microbiota is a complex community of trillion of
bacteria dwelling the length and width of the mammalian
gastrointestinal tract. The majority of these microbial reside
in our gut, with density estimated between 10''to 10'? cells
/ ml, and two kilograms heavier than our brain (MetaHIT
2010). This bulk of the community could be considered as
our additional organ, with respect to their integration and
contribution to the host’s metabolism. Their genomes are
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also considered as ‘other’ genomes in the host, comprising
more than 100 fold genes more than what human has.

More than 3 million bacterial genes have been reported
in our gut alone, which varies and are unique to each of
us (Weinstock 2012). Collectively, there are nine distinct
phyla of microbiota such as Proteobacteria, Fusobacteria,
Verrucomicrobia, Cyanobacteria, Actinobacteria,
Spirochaetes, VadinBE97 with Firmicutes and Bacteriodetes
being the most dominant phyla residing in our gut
ecosystem (Vrieze et al. 2010; Prakash et al. 2011; Dave
et al. 2012). Firmicutes, a gram-positive group of bacteria
contains more than 200 genera, including Lactobacillus,
Mycoplasma, Bacillus and Clostridium; while the gram-
negative Bacteriodetes have about 20 genera such as
Prevotella, Fusobacterium and Porphyromonas (Vrieze
et al. 2010).

Microhabitat variations throughout the gastrointestinal
tract, such as pH, oxygen, and nutrient are some of the
factors that influence specific types and compositions
of gut bacteria. Based on conventional microbiological
culture technique, anaerobic bacteria such as bacteroides,
bifidobacterium and eubacterium are more prevalent at
the lower portion of the gut, whereas the upper portion is
mainly inhabited by aerobic bacteria such as escherichia,
enterobacter, and enterococcus (Guarner & Malagelada
2003).

However, recent molecular based analysis showed
that the same bacteria phyla, Firmicutes and Bacteriodetes
are present at the different sites in the gut and that only
the relative proportion of the subgroups of the common
phyla varies. The subgroup of Firmicutes: the family
Streptococcaceae was found dominant in small intestine
while colon was enriched by Bacteroidetes phylum and
Lachnospiraceae family of Firmicutes (Frank et al. 2007).

Each individual has distinct and highly diversified
communities of gut microbes, although a similar set of gut
colonizers which are the core gut microbiota are shared
among individuals (Turnbaugh et al. 2009; Qin et al. 2010).
Therefore, different microbial types which are present
in different individuals need to be characterized as they
play important roles in influencing the well-being of an
individual, and perhaps the etiologies of some diseases.

MECHANISTICS INFLUENCE OF GUT MICROBIOTA ON
ENERGY METABOLISM

The gut microbiota has been regarded as another
‘important organ’ that is involved in the regulation of
energy homeostasis. The metabolic activities of the gut
microbiota help the host to extract and store calories as
fat, and part of the calories are extracted from luminal
nutrients for microbial growth and proliferation. Studies
on the relationship of the gut microbiota with obesity have
uncovered the influence of gut microbiota composition on
adiposity.

Béckhed et al. (2004) showed that young,
conventionally raised (CONV-R) C57BL/6 mice had 40%



higher body fat content and 47% higher epididymal fat
content compared to germfree (GF) C57BL/6 mice, despite
consuming less food. When they colonized GF mice with
the intestinal microbiota of CONV-R mice, they found
that these “conventionalized” animals experienced a
60% increase in body fat and epididymal fat within 2
weeks. The increase in body fat was accompanied by
insulin resistance, adipocyte hypertrophy, and increased
levels of circulating leptin and glucose. This occurred
despite the conventionalized animals consumed less food
compared to their germfree counterparts. In addition to
the modulation of de novo lipogenesis, the investigators
found that conventionalized mice had a higher uptake of
monosaccharides from the gut into the portal blood. This
could be partly described by the higher density of the small
intestinal villi capillaries of conventionalized mice as
compared to germ free counterparts. These findings support
the hypothesis that the composition of the gut microbiota
affects the amount of energy extracted from the diet as well
as the culprits for many metabolic disorders.

Béckhed et al. (2007) further their study to understand
the mechanisms of resistance to diet-induced obesity in
the germfree mice. Germfree or conventionalized mice
were fed with a high-fat, high-carbohydrate western
diet. In addition to the results obtained in 2004, similar
energy content was observed in the stool of both groups
of mice, indicating that mechanisms other than energy
harvested in conventionalized mice may be responsible
for the gain in fat mass. Finally, 2 complementary but
independent mechanisms that result in the increased fatty
acid metabolism in germfree mice which were resistant to
diet-induced obesity have been proposed:

1. An increased activity of fasting-induced adipocyte
factor (FIAF) activates the production of peroxisome
proliferator-activated receptor coactivator, which is
known to increase the expression of genes encoding
regulators of mitochondrial fatty acid oxidation and;

2. Anincreased inthe activity of adenosine monophosphate
— activated protein kinase (AMPK), an enzyme that
monitors the cellular energy status. AMPK will activate
key enzymes of mitochondrial fatty acid oxidation,
including acetyl-CoA carboxylase and carnitine
palmitoyl transferase. These intriguing findings
suggest that the gut microbiota has a suppressive effect
on FIAF and AMPK activities, resulting in increased
adiposity and insulin resistance in host.

In exploring the role of gut microbiota in host
metabolism, the conventionalized mice were found
to have an increased activity of hepatic carbohydrate
response element-binding protein (ChREBP) and liver
sterol response element-binding protein (SREBP-1) which
promote fat deposition in the liver and increased insulin
levels (Backhed et al. 2004). The gut microbiota therefore
caused an increase of glucose uptake from the small
intestine. This increase was associated with a high activity
of glycosyl hydrolases in conventionalized mice, which are

capable of digesting dietary polysaccharide. The glucose is
subsequently converted into lipid in the liver. The lipogenic
enzymes, acetyl-CoA carboxylase (ACC) and fatty acid
synthase (FAS) are controlled by the 2 signaling proteins,
ChREBP and liver SREBP-1 (Bickhed et al. 2004; Denechaud
et al. 2008). Interestingly, the conventionalization of FIAF-
deficient knockout (KO) mice produced only a 10% extra
total body fat compared to 60% fat gain observed in wild-
type counterparts (Béackhed et al. 2004).

A very recent evidence indicated that gut microbiota
which produces t10,c12 conjugated linoleic acid (CLA)
enhances hepatic lipogenesis and triglyceride synthesis
through mammalian target of rapamycin (mTOR) /SREBP1
pathway. In response to gut microbiota-producing t10,c12
CLA treatment, lipid accumulation occurs as a result of
(1) enhanced incorporation of acetate, palmitate, oleate,
and 2-deoxyglucose into triglycerides; (2) increased
mRNA expression and protein levels of lipogenic genes,
which include SREBP-1, acetyl-CoA carboxylase 1
(Acct), fatty acid synthase (FASN), elongation of very
long chain fatty acids protein 6 (ELOVL6), glycerol-3-
phosphate acyltransferase 1 (GPAT1), and diacylglycerol
O-acyltransferase 1 (DGAT1) (Go et. al. 2013). Based
on these evidences, extensive research is dedicated to
differentiate the mechanisms that lead to lipogenesis and
those that resulting in energy balance in host as potential
therapeutic application (Parekh et. al. 2014).

Recent molecular studies have highlighted that the
composition of intestinal microbiota in obese genetic
models is different compared to lean wild-type animals.
The obese animal model has mutations in the gene
responsible for the production of leptin, a hormone that
regulates energy intake and energy expenditure.

Ley et al. (2005) found that the obese genotype had
50% lower bacteroidetes prevalence and a significantly
higher prevalence of firmicutes compared to lean wild-
type mice. Using the same animal models, Turnbaugh
et al. (2006) discovered that the gut microbiome of obese
mice was enriched with sequences encoding for glycoside
hydrolases.

Elevated concentrations of acetate and butyrate were
also observed in the caecum of genetically obese mice
compared to lean mice. The gut microbiota produces a large
amount of glycoside hydrolases that break down complex
polysaccharides from the diet into absorbable forms, i.e
monosaccharides and short chain fatty acids (SCFAs).
Acetate, propionate and butyrate are the main SCFAs
produced by this fermentation process. SCFAs function as
ligands which bind to the G-protein-coupled receptors (Gpr
41 and Gpr 43) of enteroendocrine cells.

Upon ligand binding, these receptors stimulate
secretion of gut hormone peptide YY (PYY), which lead
to reduced intestinal transit, increased energy harvest and
stimulation of hepatic lipogenesis (Samuel et al. 2008).
Turnbaugh et al. (2006) also reported that the metabolic
characteristics associated with the obese-type microbiota
include the increased adiposity, which was transmissible
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through transplantation of the gut microbiota from ob/ob
mice to germfree non-ob/ob mice. After being colonized
with an obesity-type microbiota, adult C57BL/6J mice gained
significantly higher body fat percentage and significantly
higher caecal levels of firmicutes. Bacteroides species
which are the key polysaccharide degraders are the most
abundantly represented faecal microbiota.

There are 172 different genes found in Bacteroides
thetaiotaomicron for polysaccharide utilization, compared
with 39 genes encoded by Bifidobacterium longum.
These genes allow B. thetaiotaomicron to metabolize a
wide range of non-digestible plant polysaccharides into
oligosaccharides and monosaccharides (Xu et al. 2003).
B. thetaiotaomicron also appears to increase the activity
of host monosaccharide transporters in the gut, promote
angiogenesis and strengthen the mucosal barrier in germ
free animals upon colonization, leading to increased body
fat accumulation (Hooper et al. 2001; Stappenbeck et al.
2002; Hooper el al. 2003; Xu & Gordon, 2003).

Nevertheless, there are contradictory results on gut
microbiota and adiposity. In the colonization studies of
germ free animals, B. thetaiotaomicron which belong to
the Bacteriodetes phylum was found to induce adiposity
and body weight gain (Bickhed et al. 2004; Faith et al.
2014). The same trend was observed in other studies
which characterized by a higher levels of Firmicutes and
a reduction in Bacteriodetes population (Ley et al. 2005;
Turnbaugh et al. 2006). According to Tuohy et al. (2009),
germfree animals may have gut microbiota that are different
from the conventional animals. The gastrointestinal tract
of conventionally reared animals develops and matures
alongside its resident microbiota while germfree animals
are in fact truly xenobiotic and do not exist in nature.

Their physiology and metabolism of the germ
free mice were adapted for life without bacteria. The
conventionalization of these animals with microorganisms
would lead to a dramatic effect on their physiological
processes. The conventionalized animals now have to
cope with microbial derived metabolites, energy, antigens
and signaling molecules. Thus the roles and mechanisms
undertaken by the bacteroidetes in energy metabolism
should be explored and understood.

The fact that B. thetaiotaomicron appears to induce
obesity upon the colonization of germ free animals may
be related to the unique single bacterium-germ free animal
interactions which may be less important in conventional
animals or in humans colonized by many hundreds of
different bacterial species. B. thetaiotaomicron was shown
to induce angiogenesis and vascularization of the intestine
of germfree mouse, which greatly increased the ability of
the host to absorb nutrients from the gut.

GUT MICROBIOTA, INFLAMMATION AND OBESITY

The disturbed gut microbiota rather than a single organism
are often the pathologic agents of chronic diseases
(Friedrich 2008), and this presumably means a different
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bacterial diversity and/or different degrees of overgrowth
of the more aggressive residential bacteria, i.e., bacteria
which induce inflammatory responses via host’s immune
system (Hakansson & Molin 2011). Gut microbiota that are
known to be pathogenic or opportunistically pathogenic in
the healthy individuals are Escherichia coli (E. coli) and
Bacteroides fragilis (B. fragilis). Increased proportions of
E. coli and B. fragilis have also been linked to inflammatory
bowel diseases (IBD) (Kleessen et al. 2002; Swidsinski et
al. 2005; Wang et al. 2007).

Obesity and insulin resistance are associated with
low-grade chronic systemic inflammation (Wellen &
Hotamisligil 2005; Hotamisligil et al. 2006). Shi et al.
(2006) found that gut microbiota initiate the inflammatory
state of obesity and insulin resistance through the activity
of lipopolysaccharide (LPS), which trigger inflammatory
reactions by binding to the CD14 toll-like receptor-4 (TLR-4)
complex at the surface of innate immune cells. LPS is a
component of the gram-negative bacterial cell walls and
very small amounts of LPS found in blood plasma of healthy
human, ranging between1-200pg/ml, showing a healthy
gut barrier (Moreira et al. 2012). Increased level of LPS
in human is strongly associated with obesity and other
metabolic disorders (Miller et al. 2009; Sun et al. 2010;
Pussinen et al. 2011).

In an animal study, Cani et al. (2007) demonstrated that
after 4 weeks of high-fat feeds, mice developed metabolic
syndrome such as obesity, fasting hyperglycemia, steatosis,
macrophages infiltration of adipose tissue, hepatic insulin
resistance and hyperinsulinemia. The plasma LPS level
increased progressively in these high-fat fed mice, and
this condition is called metabolic endotoxemia. The
investigators also found that dietary pattern changed the
composition of gut microbiota with an increase ratio of
gram-negative to gram-positive bacteria. The alteration
of gut microbiota composition will lead to increased
intestinal permeability through several mechanisms. The
gut microbiota reduce the expression of host’s genes coding
for tight junction proteins ZO-1 and Occludin as well as
increasing expression of anandamide and CB1 receptors
(increased endocannabinoid system tone). The leaky gut
will allows more LPS to enter the host circulation system,
which triggers the activation of LPS receptor CD14, resulting
in an increase of the inflammatory pathways. The LPS could
enhance the number of preadipocytes (hyperplasia) which
result in obesity (Luche et. al. 2013). Activin A secreted by
macrophages isolated from obese adipose tissue plays an
important role in proliferation and differentiation of human
preadipocytes to adipocytes (Zaragosi et al. 2010).

In order to prove the causative link between LPS
and metabolic diseases, CD14 mutant mice (CD14 knock-
out mice — CD14KO) were fed with high-fat diet and/or a
chronic low dose LPS infusion. CD14KO were completely
resistant to the metabolic diseases caused by both, LPS and
high-fat diet. In metabolic endotoxemia, CD14 activates the
expression of inflammatory cytokines in adipose tissue
such as tumor necrosis factor a (TNF-a), interleukin 1 (IL-1),



interleukin 6 (IL-6), and plasminogen activator inhibitor 1
(PAI-1) leading to metabolic disorders. CD14KO mice were
found to be hypersensitive to insulin even when they were
fed a normal diet and show delayed occurrence of obesity,
diabetes and insulin resistance. Therefore, these findings
support the hypothesis that the LPS/CD14 system sets the
tone of insulin sensitivity and regulates the onset of obesity
and diabetes (Cani et al. 2007).

In a subsequent study by Cani et al. (2008), antibiotic
was used to treat the mice which were fed with high-fat
diet and ob/ob mice. Antibiotic treatment altered the
composition of the gut microbiota which reduced the cecal
and plasma LPS, and the high-fat diet-induced metabolic
disorders. Improved glucose tolerance, reduced body
weight and fat mass development and inflammation were
exhibited in both strains of obese mice. Another report
by Brun et al. (2007) also indicated that plasma LPS is
increased in leptin-deficient (o0b/ob) and hyperleptinemic
(db/db) mice. Similar findings were replicated in human
studies which supported the findings of animal studies.
Treatment of humans with antibiotic polymyxin B, which
specifically targets gram-negative bacteria, successfully
decreased LPS levels and eliminated hepatic steatosis
(Pappo et al. 1991). Another report has shown that patients
with type-2 diabetes had higher LPS levels than a well-
matched group of control subjects without diabetes (Creely
etal. 20006). Further investigation on role of gut microbiota
in initiating the inflammatory reaction was carried out in
healthy human subjects recently. Consuming a high-fat
and low-carbohydrate diet for one month was significantly
associated with increased plasma LPS level (71%), whereas
low-fat diet reduced LPS level by 38% among healthy
subjects (Pendyala et al. 2012).

ADVANCES IN ANALY SIS TECHNIQUES TO STUDYING
THE DIVERSITY OF GUT MICROBIOTA

The decreasing cost, increasing speed and depth of DNA
sequencing coupled with advances in the bioinformatics
strategies provided several options to analyse microbiome
using culture-independent method. Metagenomics, also
known as ‘environmental genomics’ provides a powerful
alternative to rRNA sequencing for analysing complex
microbial communities (von Mering et al. 2007).
Metagenomic is an emerging field in which the
power of genomic analysis applies to entire microbial
communities through sequence-based and compositional
analysis, without the need of isolating and culturing
individual microbial species (Ventura et al. 2009). Qin
et al. (2010) recently generated an extensive catalogue of
DNA sequences from gut microbiota using metagenomics
approach. They have characterized 3.3 million non-
redundant microbial genes which were derived from 576.7
gigabases of sequences from European fecal samples.
More fecal metagenomic data were reported from
Danish, Spanish and American to generate community-level
metabolic networks of the microbiome. By categorizing

metagenomics sequences based on gene functions, they
constructed community-level metabolic networks varying
in gene abundance and examined the topological features
of these networks in relation to the phenotypes of the hosts.
Their analysis identified specific network topologies related
to obesity and inflammatory bowel disease (IBD) where lean
and obese microbiomes differ primarily in their interface
with the hosts and in the way they interact with the host
metabolism (Greenblum et al. 2012).

Over the last decade, many investigations have
focused on culture-independent approaches to evaluate the
complexity of the intestinal microbiota. However, prior to the
development of second generation sequencing technologies,
the diversity and complexities of the uncultured organisms
were constructed using the phylogenetic of 16S ribosomal
RNA (rRNA) -based sequences (Gill et al. 2006; Pruesse et
al. 2007; Ley et al. 2008).

These techniques however are dependent on PCR-based
analysis of 16S rRNA as genome database of the majority
of gut microbes have yet to be made available. Little
information is available about microbial functions and the
roles of microbiota in disease pathologies (Vacharaksa &
Finlay 2010). Because of the limitations of these platforms,
a wide variety of platforms have been developed to study
gut microbial communities. Each of the platforms offers
benefits and limitations (Table 1).

16S rRNA-based sequences have been used to analyze
the diversity and complexities of the uncultured organisms.
However, this technique does not provide direct evidence
of functional capabilities (Gill et al. 2006; Pruesse et al.
2007; Ley et al. 2008).

Introduction of next generation sequencing (NGS)
allows more extensive analysis of small-subunit 16S
ribosomal RNA gene sequences and also WHOle genome
shotgun sequencing of microbes to catalogue the
bacterial genome (Turnbaugh et al. 2007; Shendure & Ji
2008; Gevers et al. 2012; Weinstock 2012). Since their
introduction in 2005, NGS technologies can be classified
into two main categories; PCR-based technologies and
single-molecule sequencing (SMS) technologies (Shokralla
et al. 2012) (Table 2).

To date, there are four commercially available NGS
platforms adopting PCR-based technology; Roche 454
Genome Sequencer (Roche Diagnostics Corporation,
Branford, CT, USA), AB SOLiD™ System (Life Technologies
Corporation, Carlsbad, CA, USA), HiSeq 2000 (Illumina
Inc., San Diego, CA, USA) and lon Personal Genome
Machine (Ion Torrent™) (Life Technologies, South San
Francisco, CA, USA) (Shokralla et al. 2012).

For sms technologies, three platforms have been
developed and announced recently; HeliScope (Helicos
BioSciences Corp., Cambridge, MA, USA), PacBio RS SMRT
system (Pacific Biosciences, Menlo Park, CA, USA) and
also Oxford Nanopore Technologies® (Oxford Nanopore
Technologies Ltd, Oxford, UK) (Shokralla et al. 2012).
The later platforms are considered the third generation
sequencing technologies, which is non-PCR based and do
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not require amplification step prior to sequencing. SMS
technologies were developed to provide a benchtop high-
throughput sequencing platform suitable for a clinical
setting. Modest set-up, effective running cost and rapid
reads output were among quality that will be offered by SMS
technologies (Loman et al. 2012; Shokralla et al. 2012).

Different NGS technologies have been used to dissect
the diversity of gut microbiome and have their own
advantages and limitations. The 454 pyrosequencing was
the first NGS technology commercially available in 2005.
This technology offers long reads length up to 800 base
pair as compared with the rest of the NGS technology (Table
2) (Thomas et al. 2012; Weinstock 2012). Long reads
generated from this 454 pyrosequencing offered more
flexible output for accurate data binning and annotation
in metagenomic analysis (Weinstock 2012). However,
reads generated from this technology are prone to have
insertion-deletion errors in homopolymers regions with
high replication of sequences.

Error as such is caused by the faulty CCD camera in
454 which translate the actual number of incorporated
nucleotides with their exact position during polymerization.
Incorrect translation is due to the low intensity or too many
variations of emitted light produced during sequencing
by synthesis. Sequences with this frameshift might be
interpreted as a rare biota in bioinformatics analysis,
especially for protein prediction and annotation using
KEGG or SEED pathway. Incorrect prediction or annotation
happens whenever protein coding sequences (CDSs) are
called on a single read that contained the frameshifts
(Thomas et al. 2012).

The major advantage of Illumina and SOLiD
technologies as compared to 454 technologies is that the
earlier detect each of the nucleotide incorporated one
at a time during polymerization step (Shokralla et al.
2012; Thomas et al. 2012; Weinstock 2012). In illumina,
each cluster of templates is supplied with polymerase
and four differently labelled fluorescent nucleotides
that have their 3’-0OH chemically inactivated. After each
nucleotide is incorporated, excitation of fluorescent
is detected by the system to identify the incorporated
nucleotide. The additional step of chemical deblocking
treatments will remove the fluorescent group and this
allows the flowing nucleotides to be incorporated with
the new fluoresced nucleotides labelled in the next flow
cycle (Shokralla et al. 2012). This specific one oligo
per flow cycle with deblocking treatment minimize
framshifts problems in generating sequences as compared
with 454 pyrosequencing in both 16S rRNA and shotgun
metagenomics sequencing.

Even though SOLiD technology applies emulsion PCR
similar with 454 pyrosequencing, it uses a sequencing-by-
oligo ligation technology to ensure homopolymer region
is accurately sequenced (Shokralla et al. 2012). This
technology will attach the universal adaptors-linked DNA
fragments with complementary oligo bases present on the
surface of each 1-mm magnetic bead.
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By this, starting of every DNA fragment is both
known and identical before these magnetic beads are
amplified individually by emulsion PCR. The resulting
amplified sequences attached to the magnetic beads will
be covalently bonded to a glass slide. This platform also
employs the same deblocking treatment used by Illumina
technologies prior to the following incorporation or ligation
of nucleotide during polymerization.

However, one of the disadvantages of both Illumina
and SOLiD systems is their relatively short reads length
ranging between 35 bp to 200 bp as depicted in Table 2.
For 16S rRNA sequencing strategy, 454 pyrosequencing is
more favoured by scientists since the longer radius of up to
800 bp offered by this platform is able to cover up to three
variable regions of 16S per reads. Shorter reads generated
from Illumina and SOLiID sequencer is able to cover only one
variable region of 16S (Weinstock 2012). For phylogeny
analysis, several regions of 16S are needed since short
reads limits its application for alignment, assignment and
annotation in downstream analysis.

For shot-gun approach, PCR-based NGS technologies
are sharing the same problem in which bias are introduced
during amplification. It may happen in two stages as
reviewed by Shokralla et al. (2012), the first incidence
may occur during library preparation due to low template
concentration, incorrect primer selection and un-optimal
profile of annealing temperature and number of replication
cycles. In addition, bias can be introduced during library
amplification by emulsion or bridge PCR prior to sequencing
(Shokralla et al. 2012).

Ion Torrent and more recently Ion Proton which
was launched in 2010 and 2012 respectively, are the
other 2 platforms offered as a second generation of NGS
technologies (Shokralla et al. 2012). Both technologies are
based on detection of hydrogen ion releases as a by-product
during nucleotide incorporation of DNA polymerization.
This technology uses ion semiconductor chip, an array of
micro wells chips contains an ion sensor beneath which
detects changes in the concentrations of hydrogen ion
whenever nucleotides is incorporated. As up to date, there
are three different micro wells offered by lon Torrent; 314,
316 and 318 million chips, which are able to generate reads
up to 1 Gb (Table 2).

The more advanced sequencer is the Ion Proton II,
which contains 660 million micro wells to capture the
release of hydrogen ions during DNA polymerization
(Shokralla et al. 2012; Thomas et al. 2012; Weinstock
2012). The generated reads data is approximately 100-fold
more massive than lon Torrent. This platform provides an
alternative for scientists to do either 16S rRNA or shotgun
metagenomics sequencing since it offers reads up to 400
base reads per run as compared to [llumina and SOLiD
technologies.

To overcome this bias and short read problem from
PCR based technologies sequencers, the third generation
technology employs SMS technologies to bypass the needs
of amplification prior sequencing. Helico Heliscope,
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PacBio and Oxford Nanopore are the examples (Table 2).
Helicos Heliscope was the first SMS sequencer available in
the market back then in 2008. No amplification is needed
after the library construction, where DNA polymerase and
four fluorescently labelled nucleotides will be flowing
in repetitively as the strands of DNA is extended. This
platform offers read nearly 1 billion sequenced reads per
run (Table 2).

PacBio or Oxford Nanopore focuses on the use of
16S rRNA and shotgun sequences, aiming to amplify more
than 200 base reads on one go (Table 2). PacBio is offering
long sequencing reads of up to 10 kb. This technology uses
real time single molecule sequencing approach in which
fluoresced light pulses, emitted as a byproduct of nucleotide
incorporation during sequencing are recorded.

However, low accuracy of reads generated by PacBio
sequencer is one of the drawbacks in metagenome analysis
(Weinstock 2012). Oxford Nanopore is another latest
single molecule based sequencing platform, developed by
Oxford Nanopore Technologies Consortium. This platform
targets to sequence very long reads, using detection on
electronic signal produced whenever the nucleotide passes
through a nanopore membrane. However the accuracy of
this platform on 16S rRNA and shotgun sequencing for
microbiome analysis is not guaranteed since it is still under
development and trial (Weinstock 2012).

Besides genomic-based technology, the non-genomic
approach such as metabolomics is a useful platform
to study the metabolic activity of complex microbial
populations through analysis of their metabolic profiles.
The gut microbiota is believed to communicate with the
host via a characteristic pattern and thus participate in
the host metabolic network. The advances of profiling
techniques such as 1H nuclear magnetic resonance (NMR)
spectroscopy, gas chromatography-mass spectrometry
(Gc-MS) and liquid chromatography mass spectrometry
(Lc-Ms) allow the simultaneous monitoring of changes
in metabolites with diverse chemical properties and at
a wide range of concentrations (Griffin 2006; Mashego
etal. 2007). Metabolomics may provide clearer picture on
the relationship between microbiota and its metabolisms,
with host’s metabolisms and diseases. However, due
to high complexity of most body fluids and tissues, a
comprehensive view of all the metabolites present in a
sample is still not possible (Sekirov et al. 2010).

Application of mass spectrometry based-metabolomics
in characterizing the impact of the murine intestinal
microbiota showed that gut microbiota is essential for the
production of bioactive indole-containing metabolites such
as the antioxidant indole-3-propionic acid from tryptophan.
Thus, this finding suggested that the gut microbiota has a
profound and systemic impact on host metabolism (Wikoff
et al. 2009). A more recent study has analyzed the colonic
luminal metabolome using a novel technique, capillary
electrophoresis mass spectrometry with time-of-flight (CE-
TOFMS). A total of 179 metabolites were detected from the
colonic luminal metabolome. Meanwhile, 48 metabolites
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were detected in significantly higher concentrations in
germ free mice compared to ex-germ free mice. The
colonic luminal metabolome is highly influenced by gut
microbiota and a comprehensive catalogue of intestinal
luminal metabolome (host and bacteria) is essential in
order to understand the effects of host-intestinal bacterial
interactions (Matsumoto et al. 2012). Schematic diagram
on how metagenomic analysis and metabolomics analysis
could discerning the role of gut microbiota in diseases is
depicted in the Figure 1.

COMPUTATIONAL ANALY SIS DISSECTING THE GUT
MICORBIAL ECOLOGY

Data from the metagenome analysis are vast and rich with
information generated from various platforms as discussed
earlier. According to Weinstock (2012), metagenomic data
analysis has three phases depending on either it is 16S
rRNA gene or shotgun sequencing. At the first phase of
both sequencing, reads produced must be in a good quality,
to avoid any misclassification during taxonomic analysis.
Issue on chimeras sequences, read length after removal of
low quality bases, duplicates reads, and also contamination
of human sequences must be addressed before further
analysis is performed.

In the second phase, sequences generated from
16S rRNA gene sequencing can be classified based on
taxonomic or clustering using Operational Taxonomic
Unit (OTU) (Weinstock 2012). For taxanomic classification,
the sequences generated are compared with the existing
bacterial 16S rRNA gene databases such as Ribosomal
Database Project (RDP), Greengenes, SILVA, and GAST.

Taxonomy-supervised analysis will be able to classify
bacterial strains according to similarity in physiology,
morphology and any genetic constituents. OTU clustering
system classifies or clusters the sequences of a closely
related species with a 97% homology using alignment-
based clustering. This specific nucleotide homology
represents a community relationship between bacteria
which is based on nucleotide distance using 16S rRNA gene
sequences (Woo-Jun et al. 2011).

Databases for bacterial 16S rRNA are available in
GenBank or Kyoto Encyclopedia of Genes and Genomes
(KEGG) and are useful in comparative analysis. Data
obtained from shot-guns reads can be compared with their
respective species using a simple Basic Local Alignment
Search Tools (BLAST). This alignment uses a specified
homology percentage of 97% to generate a list of genes that
were matched reads from these two databases (Weinstock
2012). However, there are limitations currently faced by
researchers as not all bacteria has a deposited reference
genome and in some cases, and some new roads are
matched to the genes whereby the function has not been
elucidated.

A variety of software can be used in the second phase
of analysis, for base-calling and detection of polymorphism
of the sequences generated, de novo assembly using paired
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or unpaired reads, annotation and prediction analysis. To
be specific, BLAST is a suitable tool to align long reads,
whereas Short Oligonucleotide Analysis Package (SOAP)
de Novo can be used to align and reconstruct short reads
without the aid of a reference genome. The assembly of
these short fragments of sequences is very challenging
since these reads have relatively low accuracy, thus de
novo mate-paired reads assembly is the best alternative
(Shendure & Ji 2008; Weinstock 2012).

In the third phase of analysis, the assembled reads of
similar communities were plotted on the abundance curves
or biodiversity plots to generate the rarefraction curve of
the studied metagenome (Schloss et al. 2009; Lozupone
et al. 2011). Then, functional aspect of metagenome will
be described to understand the roles of microbiota. One of
the software that could be used is HMP Unified Metabolic
Analysis Network (HUMAnN) (Abubucker et al. 2012).
Using this software, the shot-gun reads will be aligned to

KEGG ontology database using the BLAST search hit list.
The assignment of each gene family for each shot-gun
reads are based on the total sums of the alignment from the
BLAST search hit list. The identified gene will be assigned
to metabolic pathway using MinPath feature available in
this software. The identified pathway will be reconstructed
using a maximum parsimony method with several
filtrations to remove false positive pathway and to account
for rare genes in abundant pathways. The resulting output
will provide information on the presence or absence and
abundances of the identified pathways (Abubucker et al.
2012). Therefore, the role of microbiota on the physiology
and homeostasis of the host could be understood.
Through genes weighted sum of hits, a list of hits from
the BLAST search linked with KEGG and SEED databases is
used to create metabolic pathways in order to reconstruct
the functional descriptions of community (Abubucker et al.
2012). Variance analysis can be done through alignments
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of DNA reads to reference genomic. Computational analysis
can also be used to determine which organisms co-occur
or rarely co-occur by assessment of the dynamics of
community structure in longitudinal time series (Caporaso
etal. 2011).

For analyzing metabolomics data, many computational
tools have been developed. Various metabolites produced
by gut microbiota can be analyzed using Mass Profiler
Professional (MPP) software from Agilent Technologies
(Agilent information 2012) and the databases such
as METLIN Metabolite Personal Compound Database
(pcD) and the METLIN Metabolite Personal Compound
Database and Library (PCDL) provide information on
the biological activities of small molecules (Agilent
information 2012). The characterization of gut microbiota
metabolic fingerprint and its interaction with the host can
be revealed through metabolomics approach (Marcobal et
al. 2013). The established biological pathways analysis are
performed using Pathway Architect to efficiently project
the results of differential abundance results onto publicly
available biological pathways, including KEGG, BioCyc
and WikiPathways (Scalbert et al. 2009; McHardy et al.
2013).

CONCLUSION

The gut microbiota is increasingly being accepted as an
environmental factor that affects host metabolism and
contributes too many chronic pathological conditions
such as obesity, diabetes and cardiovascular disease.
Compelling evidence supports the concept that the
microbial community participates in the development of
the fat mass deposition, insulin resistance and low-grade
inflammation that characterizes obesity. The development
of powerful analytical methods will provide novel data
lending insight into the complexity of the gut microbiota.
Nevertheless, more researches with advanced methods
should be carried out in order to determine how specific
changes in the gut composition will affect or counteract
the development of diseases.
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