28 GHz Band Dual Array Microstrip Patch Antenna for Next Generation 5G Applications: A Numerical Approach

Anik Paul

Abstract


This article presents the design and evaluation of two high-gain 5G antenna arrays integrated on a single substrate, specifically designed for use in various 5G devices. Traditional microstrip patch antennas have bandwidth limitation and efficiency related issues when scaled for higher frequency applications. This work has focused on improving the return loss, bandwidth, gain, and efficiency of the microstrip patch antenna when used for higher frequency range applications. This proposed antenna features two 1×9 arrays positioned at the opposing edges of the substrate, optimized for operation in the broadside direction. The antenna operates in the range of 26 – 29 GHz, achieving a wide bandwidth of 3 GHz. This antenna was designed in CST studio and many simulations were run to get the optimized outputs. First, a single element design was designed then 1×4 array, 1×9 array and lastly the present design of 2×9 array was made. In the final design there are two different types of single antenna element present. This design produces better s-parameter values, VSWR, gain and efficiency. At resonant frequency, 28.73 GHz the return loss is -26.21 dB, gain is 5.54 dB, efficiency is 82.7% and VSWR is 1.10. The simulated results are provided to validate the effectiveness and feasibility of the proposed dual antenna array design for next generation 5G communication systems.

Full Text:

Untitled Untitled

References


Adamiuk, G., Zwick, T., & Wiesbeck, W. (2012). UWB antennas for communication systems. Proceedings of the IEEE,

(7), 2308–2321. https://doi.org/10.1109/jproc.2012.2188369

Ahmad, I., Sun, H., Zhang, Y., & Samad, A. (2020). High gain rectangular slot microstrip patch antenna for 5G mm-wave

wireless communication. In 2020 5th International Conference on Computer and Communication Systems (ICCCS).

https://doi.org/10.1109/icccs49078.2020.9118602

Ali, W., Das, S., Medkour, H., & Lakrit, S. (2020). Planar dual-band 27/39 GHz millimeter-wave MIMO antenna for 5G

applications. Microsystem Technologies, 27(1), 283–292. https://doi.org/10.1007/s00542-020-04951-1

Ban, Y.-L., Li, C., Sim, C.-Y.-D., Wu, G., & Wong, K.-L. (2016). 4G/5G multiple antennas for future multi-mode

smartphone applications. IEEE Access, 4, 2981–2988. https://doi.org/10.1109/ACCESS.2016.2582786

Dixit, A. S., & Kumar, S. (2019, December 9). The enhanced gain and cost-effective antipodal Vivaldi antenna for 5G

communication applications. [Journal Name Unavailable].

(a) (b)

Jornal of Climate Change and Space Science (JCCaSS)

ISSN:

Girjashankar, P. R., Upadhyaya, T., & Desai, A. (2022). Multiband hybrid MIMO DRA for sub‐6 GHz 5G and WiFi‐6

applications. International Journal of RF and Microwave Computer-Aided Engineering, 32(12), Article 23479.

https://doi.org/10.1002/mmce.23479

Hong, T., Zheng, S., Liu, R., & Zhao, W. (2021). Design of mmWave directional antenna for enhanced 5G broadcasting

coverage. Sensors, 21(3), 746. https://doi.org/10.3390/s21030746

Hong, W., Baek, K., Lee, Y.-J., & Kim, Y. (2014). Design and analysis of a low-profile 28 GHz beam steering antenna

solution for future 5G cellular applications. International Microwave Symposium.

https://doi.org/10.1109/mwsym.2014.6848377

Hong, W., Baek, K.-H., Lee, Y., Kim, Y., & Ko, S.-T. (2014). Study and prototyping of practically large-scale mmWave

antenna systems for 5G cellular devices. IEEE Communications Magazine, 52(9), 63–69.

https://doi.org/10.1109/mcom.2014.6894454

Lai, H. W., & Wong, H. (2015). Substrate integrated magneto-electric dipole antenna for 5G Wi-Fi. IEEE Transactions on

Antennas and Propagation, 63(2), 870–874. https://doi.org/10.1109/TAP.2014.2384015

Lai, H. W., & Wong, H. (2015). Substrate integrated magneto-electric dipole antenna for 5G Wi-Fi. IEEE Transactions on

Antennas and Propagation, 63(2), 870–874. https://doi.org/10.1109/TAP.2014.2384015

Li, T., & Zhi Ning Chen. (2020). Shared-surface dual-band antenna for 5G applications. IEEE Transactions on Antennas and

Propagation, 68(2), 1128–1133. https://doi.org/10.1109/tap.2019.2938584

Lin, Q. W., Wong, H., Zhang, X. Y., & Lai, H. W. (2014). Printed meandering probe-fed circularly polarized patch antenna

with wide bandwidth. IEEE Antennas and Wireless Propagation Letters, 13, 654–657.

https://doi.org/10.1109/lawp.2014.2314141

Mak, K. M., Lai, H. W., Luk, K. M., & Chan, C. H. (2014). Circularly polarized patch antenna for future 5G mobile phones.

IEEE Access, 2, 1521–1529. https://doi.org/10.1109/access.2014.2382111

Mpele, P. M., Mbango, F. M., & Bernard, D. (2019). A small dual-band (28/38 GHz) elliptical antenna for 5G applications

with DGS. 8(10), 353–357. [Journal Name Unavailable]

Oras Ahmed Shareef, Mohammed, A., Karrar Shakir Muttair, Mahmood Farhan Mosleh, & Mohammad Bashir

Almashhdany. (2022). Design of multi-band millimeter wave antenna for 5G smartphones. Indonesian Journal of Electrical

Engineering and Computer Science, 25(1), 382–387. https://doi.org/10.11591/ijeecs.v25.i1.pp382-387

Qas Elias, B. B., Soh, P. J., Abdullah Al‐Hadi, A., & Vandenbosch, G. A. E. (2020). Design of a compact, wideband, and

flexible rhombic antenna using CMA for WBAN/WLAN and 5G applications. International Journal of Numerical

Modelling: Electronic Networks, Devices and Fields, 34(5). https://doi.org/10.1002/jnm.2841

Raheel, K., Altaf, A., Waheed, A., Kiani, S. H., Sehrai, D. A., Tubbal, F., & Raad, R. (2021). E-Shaped H-Slotted Dual

Band mmWave Antenna for 5G Technology. Electronics, 10(9), 1019. https://doi.org/10.3390/electronics10091019

Rahman, A., Yi, N. M., Ahmed, A. U., Alam, T., & Singh, M. (2016). A compact 5G antenna printed on manganese zinc

ferrite substrate material. IEICE Electronics Express, 13(11), 20160377–20160377.

https://doi.org/10.1587/elex.13.20160377

Rana, M. S., & Rahman, M. M. (2022). Design and analysis of microstrip patch antenna for 5G wireless communication

systems. [Journal Name Unavailable]. Received: April 14, 2022; Revised: July 6, 2022; Accepted: August 25, 2022.

Ray, S. K., & Shrivastava, A. (2018). A triple rectangular slotted microstrip patch antenna for WLAN & WIMAX

applications. International Journal of Antennas, 4(1/2), 01–08. https://doi.org/10.5121/jant.2018.4201

S. B. K. (2021). A design and analysis of crown slot patch antennas for 5G applications. Turkish Journal of Computer and

Mathematics Education, 12(12), 2663–2668.

Sehrai, D. A., Abdullah, M., Altaf, A., Kiani, S. H., Muhammad, F., Tufail, M., Irfan, M., Glowacz, A., & Rahman, S.

(2020). A novel high gain wideband MIMO antenna for 5G millimeter wave applications. Electronics, 9(6), 1031.

https://doi.org/10.3390/electronics9061031

Shamim, S. M., Dina, U. S., Arafin, N., & Sultana, S. (2021). Design of efficient 37 GHz millimeter-wave microstrip patch

antenna for 5G mobile application. Plasmonics, 16(4), 1417–1425. https://doi.org/10.1007/s11468-021-01412-x

Tahseen, H. U., Zheng, Z., & Yang, L. (2021). A single substrate 38 GHz dual antenna array with compact feed network.

IEEJ Transactions on Electrical and Electronic Engineering, 16(9), 1203–1208. https://doi.org/10.1002/tee.23418

Tahseen, H. U., Zheng, Z., & Yang, L. (2021). A single substrate 38 GHz dual antenna array with compact feed network.

IEEJ Transactions on Electrical and Electronic Engineering, 16(9), 1203–1208. https://doi.org/10.1002/tee.23418

Tarpara, N. M., Rathwa, R. R., & Kotak, N. A. (2018, April). Design of slotted microstrip patch antenna for 5G application.

[Journal Name Unavailable].

Toma, R. N., Shohagh, I. A., & Hasan, N. (2019). Analysis of the effect of changing height of the substrate of square-shaped

microstrip patch antenna on the performance for 5G application. International Journal of Wireless and Microwave

Technologies, 9(3), 33–45. https://doi.org/10.5815/ijwmt.2019.03.04

Zeain, M. Y., Abu, M. S., Zakaria, Z., Jamal, A., Syahputri, R., Toding, A., & Sriyanto, S. (2020). Design of a wideband

strip helical antenna for 5G applications. Engineering, 9(5), 1958–1963. https://doi.org/10.11591/eei.v9i5.2055

Zhang, J., Bjornson, E., Matthaiou, M., Ng, D. W. K., Yang, H., & Love, D. J. (2020). Prospective multiple antenna

technologies for beyond 5G. IEEE Journal on Selected Areas in Communications, 38(8), 1637–1660.

https://doi.org/10.1109/jsac.2020.3000826


Refbacks

  • There are currently no refbacks.