28 GHz Band Dual Array Microstrip Patch Antenna for Next Generation 5G Applications: A Numerical Approach
Abstract
References
Adamiuk, G., Zwick, T., & Wiesbeck, W. (2012). UWB antennas for communication systems. Proceedings of the IEEE,
(7), 2308–2321. https://doi.org/10.1109/jproc.2012.2188369
Ahmad, I., Sun, H., Zhang, Y., & Samad, A. (2020). High gain rectangular slot microstrip patch antenna for 5G mm-wave
wireless communication. In 2020 5th International Conference on Computer and Communication Systems (ICCCS).
https://doi.org/10.1109/icccs49078.2020.9118602
Ali, W., Das, S., Medkour, H., & Lakrit, S. (2020). Planar dual-band 27/39 GHz millimeter-wave MIMO antenna for 5G
applications. Microsystem Technologies, 27(1), 283–292. https://doi.org/10.1007/s00542-020-04951-1
Ban, Y.-L., Li, C., Sim, C.-Y.-D., Wu, G., & Wong, K.-L. (2016). 4G/5G multiple antennas for future multi-mode
smartphone applications. IEEE Access, 4, 2981–2988. https://doi.org/10.1109/ACCESS.2016.2582786
Dixit, A. S., & Kumar, S. (2019, December 9). The enhanced gain and cost-effective antipodal Vivaldi antenna for 5G
communication applications. [Journal Name Unavailable].
(a) (b)
Jornal of Climate Change and Space Science (JCCaSS)
ISSN:
Girjashankar, P. R., Upadhyaya, T., & Desai, A. (2022). Multiband hybrid MIMO DRA for sub‐6 GHz 5G and WiFi‐6
applications. International Journal of RF and Microwave Computer-Aided Engineering, 32(12), Article 23479.
https://doi.org/10.1002/mmce.23479
Hong, T., Zheng, S., Liu, R., & Zhao, W. (2021). Design of mmWave directional antenna for enhanced 5G broadcasting
coverage. Sensors, 21(3), 746. https://doi.org/10.3390/s21030746
Hong, W., Baek, K., Lee, Y.-J., & Kim, Y. (2014). Design and analysis of a low-profile 28 GHz beam steering antenna
solution for future 5G cellular applications. International Microwave Symposium.
https://doi.org/10.1109/mwsym.2014.6848377
Hong, W., Baek, K.-H., Lee, Y., Kim, Y., & Ko, S.-T. (2014). Study and prototyping of practically large-scale mmWave
antenna systems for 5G cellular devices. IEEE Communications Magazine, 52(9), 63–69.
https://doi.org/10.1109/mcom.2014.6894454
Lai, H. W., & Wong, H. (2015). Substrate integrated magneto-electric dipole antenna for 5G Wi-Fi. IEEE Transactions on
Antennas and Propagation, 63(2), 870–874. https://doi.org/10.1109/TAP.2014.2384015
Lai, H. W., & Wong, H. (2015). Substrate integrated magneto-electric dipole antenna for 5G Wi-Fi. IEEE Transactions on
Antennas and Propagation, 63(2), 870–874. https://doi.org/10.1109/TAP.2014.2384015
Li, T., & Zhi Ning Chen. (2020). Shared-surface dual-band antenna for 5G applications. IEEE Transactions on Antennas and
Propagation, 68(2), 1128–1133. https://doi.org/10.1109/tap.2019.2938584
Lin, Q. W., Wong, H., Zhang, X. Y., & Lai, H. W. (2014). Printed meandering probe-fed circularly polarized patch antenna
with wide bandwidth. IEEE Antennas and Wireless Propagation Letters, 13, 654–657.
https://doi.org/10.1109/lawp.2014.2314141
Mak, K. M., Lai, H. W., Luk, K. M., & Chan, C. H. (2014). Circularly polarized patch antenna for future 5G mobile phones.
IEEE Access, 2, 1521–1529. https://doi.org/10.1109/access.2014.2382111
Mpele, P. M., Mbango, F. M., & Bernard, D. (2019). A small dual-band (28/38 GHz) elliptical antenna for 5G applications
with DGS. 8(10), 353–357. [Journal Name Unavailable]
Oras Ahmed Shareef, Mohammed, A., Karrar Shakir Muttair, Mahmood Farhan Mosleh, & Mohammad Bashir
Almashhdany. (2022). Design of multi-band millimeter wave antenna for 5G smartphones. Indonesian Journal of Electrical
Engineering and Computer Science, 25(1), 382–387. https://doi.org/10.11591/ijeecs.v25.i1.pp382-387
Qas Elias, B. B., Soh, P. J., Abdullah Al‐Hadi, A., & Vandenbosch, G. A. E. (2020). Design of a compact, wideband, and
flexible rhombic antenna using CMA for WBAN/WLAN and 5G applications. International Journal of Numerical
Modelling: Electronic Networks, Devices and Fields, 34(5). https://doi.org/10.1002/jnm.2841
Raheel, K., Altaf, A., Waheed, A., Kiani, S. H., Sehrai, D. A., Tubbal, F., & Raad, R. (2021). E-Shaped H-Slotted Dual
Band mmWave Antenna for 5G Technology. Electronics, 10(9), 1019. https://doi.org/10.3390/electronics10091019
Rahman, A., Yi, N. M., Ahmed, A. U., Alam, T., & Singh, M. (2016). A compact 5G antenna printed on manganese zinc
ferrite substrate material. IEICE Electronics Express, 13(11), 20160377–20160377.
https://doi.org/10.1587/elex.13.20160377
Rana, M. S., & Rahman, M. M. (2022). Design and analysis of microstrip patch antenna for 5G wireless communication
systems. [Journal Name Unavailable]. Received: April 14, 2022; Revised: July 6, 2022; Accepted: August 25, 2022.
Ray, S. K., & Shrivastava, A. (2018). A triple rectangular slotted microstrip patch antenna for WLAN & WIMAX
applications. International Journal of Antennas, 4(1/2), 01–08. https://doi.org/10.5121/jant.2018.4201
S. B. K. (2021). A design and analysis of crown slot patch antennas for 5G applications. Turkish Journal of Computer and
Mathematics Education, 12(12), 2663–2668.
Sehrai, D. A., Abdullah, M., Altaf, A., Kiani, S. H., Muhammad, F., Tufail, M., Irfan, M., Glowacz, A., & Rahman, S.
(2020). A novel high gain wideband MIMO antenna for 5G millimeter wave applications. Electronics, 9(6), 1031.
https://doi.org/10.3390/electronics9061031
Shamim, S. M., Dina, U. S., Arafin, N., & Sultana, S. (2021). Design of efficient 37 GHz millimeter-wave microstrip patch
antenna for 5G mobile application. Plasmonics, 16(4), 1417–1425. https://doi.org/10.1007/s11468-021-01412-x
Tahseen, H. U., Zheng, Z., & Yang, L. (2021). A single substrate 38 GHz dual antenna array with compact feed network.
IEEJ Transactions on Electrical and Electronic Engineering, 16(9), 1203–1208. https://doi.org/10.1002/tee.23418
Tahseen, H. U., Zheng, Z., & Yang, L. (2021). A single substrate 38 GHz dual antenna array with compact feed network.
IEEJ Transactions on Electrical and Electronic Engineering, 16(9), 1203–1208. https://doi.org/10.1002/tee.23418
Tarpara, N. M., Rathwa, R. R., & Kotak, N. A. (2018, April). Design of slotted microstrip patch antenna for 5G application.
[Journal Name Unavailable].
Toma, R. N., Shohagh, I. A., & Hasan, N. (2019). Analysis of the effect of changing height of the substrate of square-shaped
microstrip patch antenna on the performance for 5G application. International Journal of Wireless and Microwave
Technologies, 9(3), 33–45. https://doi.org/10.5815/ijwmt.2019.03.04
Zeain, M. Y., Abu, M. S., Zakaria, Z., Jamal, A., Syahputri, R., Toding, A., & Sriyanto, S. (2020). Design of a wideband
strip helical antenna for 5G applications. Engineering, 9(5), 1958–1963. https://doi.org/10.11591/eei.v9i5.2055
Zhang, J., Bjornson, E., Matthaiou, M., Ng, D. W. K., Yang, H., & Love, D. J. (2020). Prospective multiple antenna
technologies for beyond 5G. IEEE Journal on Selected Areas in Communications, 38(8), 1637–1660.
https://doi.org/10.1109/jsac.2020.3000826
Refbacks
- There are currently no refbacks.