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Abstract  

  

Malaysia experiences abundant rainfall, which can potentially lead to geo-hydrological disasters. 

Therefore, studying the effect of climate change on rainfall events is crucial. The General 

Circulation Model (GCM) is a well-accepted terrestrial-scale climate simulation approach widely 

employed by climate scientists and researchers worldwide. However, despite its comprehensive 

approach, GCM lacks in necessary precision at the local level due to its coarse resolution. 

Consequently, employing statistical downscaling techniques becomes essential for achieving 

accurate simulations at the local scale. Notably, there is a scarcity of localized studies focusing on 

the climate change effect, specifically in Penang Island. Penang Island was selected as the study 

area due to its high urbanization rate and frequent geo-hydrological disasters. The current study 

assessed the impact of climate change on mean annual rainfall (MAR) distribution using a 

statistical downscaling model (SDSM) under two representative concentration pathways (RCP4.5 

and RCP8.5). SDSM is calibrated and validated, and rainfall spatial distribution maps are 

generated through Kriging and IDW methods for the observed (1990-2019) and future (2070-

2099) periods. The results indicate that under both RCPs, MAR projections increased. RCP8.5 

(14.93%) shows a higher effect, where the increment percentage is almost double that of RCP4.5 

(8.6%). The model displays strong correlation and performance, with a disparity of 1.24% to 

11.73%, averaging 7.50%, between observed and modelled results. The outcomes of this research 

hold significant implications for local authorities, providing valuable insights to enhance 

preparedness and response strategies concerning the evolving climate conditions, particularly in 
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the context of geo-hydrological hazards, environmental concerns, and water security in Penang 

Island. However, it is crucial to acknowledge the study's limitation, considering only two climate 

scenarios (RCP4.5 and RCP8.5). Future research efforts should involve a broader spectrum of 

climate scenarios to yield a more comprehensive understanding of climate change's multifaceted 

and unpredictable nature for enhanced robustness of future climate-related strategies and policies.  

  

Keywords: Climate change, Mean Annual Rainfall, Penang Island, Representative Concentration 

Pathway, Statistical Downscaling Model (SDSM)  

  

 

Introduction   
 

The United Nations Framework Convention on Climate Change (UNFCCC) in 1992 defines 

climate change as alterations in the climate system that can be attributed to human activities, either 

directly or indirectly. These changes can potentially impact the composition of the atmosphere and 

the natural variability of climate across similar periods. The World Health Organization (WHO) 

projected that due to the climate change effect from 2030 to 2050, there will be 250,000 deaths 

annually. By 2030, direct health damage costs are expected to be between 2 and 4 billion dollars 

annually (WHO, 2018). On top of this, Malaysia is an equatorial climate country with rainfall that 

varies between 2000 mm to 5000 mm annually, which might contribute to a significant climate 

change factor. The abundant rainfall in Malaysia benefits the country's development, such as water 

supply and agriculture. On the other hand, this climate condition also has negative impacts as the 

higher rainfall may lead to more natural disasters such as floods, landslides, and debris flow. This 

fact necessitates studying the effect of climate change on rainfall projection in this country (Abdul 

Rahman, 2018; Muhammad Nasir Mohd Adib et al., 2022; Hussain et al., 2015).  

A practical way to look at climate change's effect on rainfall projection is by observing the 

aerosol and greenhouse gas concentrations. Several studies use GCMs to simulate a variety of 

aerosol concentrations and greenhouse gases or another hypothetical factors to determine their 

effect on the climate change phenomenon (Amin et al., 2017; Cordeiro et al., 2016; Dar et al., 

2019; Sørland et al., 2018; Syafrina et al., 2017). The GCM performs well in stimulating climate 

change in large and terrestrial-scale climates. Unfortunately, the modelled GCM is incompatible 

with simulating the climate for local and site scales as its spatial resolution is too coarse (Protong 

et al., 2018). According to Robinson & Finkelstein (1991), the simulation   of fine-scale climate 

change at the regional and local scale highly depends on the climate projection information details 

in the study area, especially in areas subjected to the complex geomorphology, islands, coasts, and 

regions with a high heterogeneous land surface cover. 

The problem of GCM can be resolved by applying dynamical downscaling or statistical 

downscaling to downscale from the global scale to the regional and site scales. The Regional 

Climate Model (RCM) is a dynamical downscaling model useful for climate projection at the local 

scale involving complex local topography. According to Builes & Pántano (2021), the initial 

conditions for RCMs are derived from GCM simulations or dataset reanalysis. The land cover and 

topographical features within specific grids of GCMs are considered in the RCM to ensure that 

higher resolution in the diverse climatic variables is successfully simulated. The RCM not only 

can downscale the climate at the scale that GCM is unresolved but also improves the quality of the 

produced model by reducing biases associated with the driving GCM (Yang et al., 2022). 
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The second approach to downscaling GCM is using a statistical downscaling method. The 

multiple linear regression approach was used in the statistical model to downscale GCM spatial 

data of predictor-predict and daily relationships. The predictor variables provided daily 

information regarding the large-scale state of the atmosphere while the predicted variable was 

described at the site scale, such as rainfall and temperature (Hassan & Harun, 2011). Practically, 

this method has several advantages over the dynamical downscaling method. This method can 

offer more reliability and promises more success when dealing with tight budgets, and quick 

evaluations of localized climate change effects are essential (Wilby & Dawson, 2007). The 

Statistical Downscaling Model (SDSM) can develop a climate change scenario for the site scale at 

the daily time rate by statically downscaling the resolution of GCM output. Therefore, this study 

used SDSM to project the rainfall on the local scale in the study area under the effect of climate 

change.  

Representative concentration pathways (RCP) refer to the simulation of various feasible 

global emission scenarios. RCP was created by the Intergovernmental Panel on Climate Change 

(IPCC) to model and explore various possible futures of greenhouse gas emissions and associated 

climate change impacts (IPCC, 2014). RCP describes prescribed pathways and levels of 

greenhouse gas concentrations for the 21st century based on varying levels of radiative forcing 

stabilization (Mavume et al., 2021; Vuuren et al., 2011; Vuuren & Carter, 2014).  

This study employs two RCP scenarios, namely RCP 4.5 and RCP 8.5, to develop the 

historical and future climatic conditions for 30-year return periods (2070-2099) using the SDSM 

model. Both of these RCPs are widely used to represent medium stabilization (RCP4.5) and a high-

emission (RCP8.5) climate scenarios in the SDSM model (Munawar et al., 2021; Mwabumba et 

al., 2022; Onarun et al., 2023; Protong et al., 2018; Rana & Adhikary, 2023; Zhang et al., 2020). 

RCP4.5 is associated with an intermediate scenario in which global emissions reach their peak in 

2040 and subsequently decline. On the other hand, RCP8.5 depicts a scenario in which greenhouse 

gas emissions would persist in rising over the 21st century (Raymond et al., 2020). 

  Rainfall was expected to increase globally due to the effects of climate change. A study 

by Takhellambam et al. (2024) in  Gulf-Atlantic coast and the Appalachian Mountains highlighted 

that the mean annual rainfall (MAR) was expected to increase by 7% to 36% due to the effects of 

climate change . There is an ongoing debate regarding the outcomes observed in previous studies 

concerning the future rainfall pattern in response to climate change.  A study by Sa'adi et al. 

(2024a), Sa'adi et al. (2024b), and Sa et al. (2024) found that rainfall in Malaysia continues to show 

an inconsistent pattern, fluctuating under different climate change scenarios and climate zones. 

However, most of the zones in their study area experienced increased rainfall. Conversely, 

Sammathuria & Ling (2009) suggest a future reduction in Malaysia's annual rainfall due to the 

effects of climate change. 

Limited studies have focused on the impact of climate change on Penang Island. Yang et 

al. (2020) tried identifying the climate change at Penang Island by utilizing rainfall data based on 

the interpolation method and presenting the result in a spatial distribution map. However, they did 

not consider the effect of climate change for future periods and only focused on the climate trend 

during the past period (2003-2018). Most global climate models have coarse resolutions, which 

may fail to represent islands' distinct topography and microclimatic variations accurately. 

Therefore, conducting a study focused particularly on Penang Island is imperative to provide 

precise and practical outcomes. In addition, the availability of rainfall stations is limited on this 

Island, making the spatial distribution map crucial, especially for areas that are absent or far from 

rainfall stations.  Other than that, there is a need for research that employs downscaling techniques 
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to provide detailed projections and spatial rainfall distribution maps that can facilitate planning 

and decision-making at the local level for Penang Island.  

The current study applies long-term projections (2070-2099) to assess the sustained effects 

of climate change on Penang Island. The long-term perspective is essential for infrastructure 

planning, sustainable development, and geo-hydrological hazard preparedness. The main 

objectives of this study, therefore, are: (1) to conduct calibration and validation of the SDSM 

regarding the rainfall observation record, (2) to project MAR in Penang Island under two climate 

change scenario (RCP4.5 and RCP8.5) for the future period 2070-2099, and (3) to develop MAR 

distribution map in Penang Island under the effect of climate change.  

 
 

Method and Study area  

  

Study area  

 

Penang Island, shown in Figure 1, has been selected as the study area. It is situated between 

latitudes 5° 8' N to 5° 35' N and longitude 100° 8'E to 100° 32' E. According to the latest data from 

Malaysia (2020), Penang Island is home to approximately 825,200 residents and is considered one 

of the region's highest population densities, with 1691 people per square kilometre. Penang Island 

has been undergoing continuous development, ranging from urbanisation to agriculture. However, 

this rapid growth has put immense pressure on the environment, leading to various issues such as 

water pollution, flooding, deforestation, soil erosion, the decimation of endangered species, 

sedimentation, and landslides (Ahmad et al., 2006;  Hassan et al., 2018). The urbanization of 

Penang Island can disturb its ecosystem, directly and indirectly impacting the rates of climate 

change on the island. Consequently, it is anticipated that climate change will significantly 

influence the severity and frequency of geo-hydrological hazards, given its substantial role in those 

phenomena.  

Penang Island's MAR ranges from 2670 to 6240 mm, with the heaviest rainfall occurring 

during the monsoon period (Ahmad et al., 2006; Elmahdy et al., 2016). The Malaysian 

Meteorological Department states that Penang Island experiences a consistent surface temperature 

and relative humidity pattern, ranging from 27 to 35 degrees Celsius and 65% to 70%, respectively. 

The surface temperature of the Island reaches its highest value between April and June, while 

relative humidity reaches its lowest value in June, July, and September. Frequent flash floods have 

been reported on the Island for the past decade, and the major flood event occurred in November 

2017 due to over 20 hours of rainfall.      

Rainfall data for the study area is used as the observed data to project the rainfall for the 

future period. Historical rainfall data on the study area is recorded by seven rain gauge stations 

obtained from the Department of Irrigation and Drainage Malaysia (DID) as shown in Figure 1. 

The accuracy of rainfall data obtained From JPS Malaysia from the rain gauge station was within 

+- 0.1 mm or +-1% of the measured value (DID, 2018). Table 1 summaries the data used in the 

current study. This study utilizes a database spanning thirty years of mean daily rainfall data from 

1991 to 2019 to project the future rainfall patterns for 2070 to 2099, employing the SDSM 

software. The significance of using this extensive 30-year data period lies in its importance for 

achieving more accurate calibration and validation results (Almazroui et al., 2017; Hasan et al., 

2018; Wilby et al., 2002). 
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             Figure 1. Study area: Penang Island                              Figure 2. The interface of SDSM software 
 

Table 1. Summary of the data used in the current study 

 

Data type: Mean Daily Rainfall data (1991-2019) Sources 

No Station Latitude Longitude  

1 Tali Air Besar Sg. Pinang 5° 23' 30" 100° 12' 45" Department of 

Irrigation and 

Drainage 

Malaysia (JPS) 

2 Pintu Air Bagan di Airw Itam 5° 21' 15" 100° 12' 00" 

3 Kolam Takongan Air Itam 5° 23' 45'' 100° 15' 55" 

4 Rumah Kebajikan 5° 23' 30'' 100° 18' 15" 

5 Klinik Bkt. Bendera 5° 25' 25" 100° 16' 15" 

6 Kolam Bersih Pulau Pinang 5° 26' 25" 100° 17' 10" 

7 Lorong Batu Lanchang 5° 24' 09" 100° 17' 58" 

 Data type: Climate change scenario  

1 NCEP-NCAR_1961_2005 Canadian Centre 

for Climate 

Modelling and 

Analysis website 

(CCDS, 2020 

2 CanESM2_rcp85_2006_2100, 

3 CanESM2_rcp45_2006_2100, 

4 CanESM2_rcp26_2006_2100 

5 CanESM2_historical_1961_2005 

 

Statistical Downscaled Model (SDSM) 

 

In this study, SDSM software is employed, a method widely utilized in previous studies for 

downscaling the GCM data to the local scale (Eingrüber & Korres, 2022; El et al., 2023, 2023; 

Gunathilake et al., 2022; Hailu et al., 2022; Han et al., 2023; Hussain et al., 2015; Munawar et al., 

2021, 2022; Onarun et al., 2023; Onarun & Sittichok, 2023;  Rana & Adhikary, 2023; Zarei et al., 

2023). The SDSM software comprises seven core operations, including data transformation and 

quality control, screening of predictor variables, model calibration, weather generation (using 

observed predictors), statistical analyses, visualization of model output, and scenario generation 

(using climate model predictors) (Wilby & Dawson, 2007). Figure 2 displays the interface of the 

SDSM software, and Figure 3 illustrates the overall process of climate scenario generation using 

SDSM. The SDSM model is calibrated using the baseline period (1990-1999) from the climate 

data corresponding to each station.  Wilby & Dawson (2007) have authored a manual for the 
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SDSM software, which provides in-depth technical information regarding its application. The 

future global climate is significantly influenced by the level of greenhouse gases, aerosols, and 

other pollutants released into the atmosphere. Emission scenarios depend on these variables, 

creating a range of climate scenarios that account for technological advancement and 

socioeconomic expansion (Rianna et al., 2014). 

 
 

 Source: Wilby & Dawson, 2007  

 

Figure 3. Climate scenario generation using SDSM  

 

Selection of predictor 

 

The predictor variable used in this study is sourced from the Canadian Centre for Climate 

Modelling and Analysis website (CCDS, 2020), specifically, the Canadian Earth System Model 

known as CanESM2. The zip file is downloaded by selecting the grid box containing the selected 

study area, as shown in Figure 4. The downloaded file contains five primary directories, which can 

be extracted upon unzipping. These directories are NCEP-NCAR_1961_2005, 

CanESM2_rcp85_2006_2100, CanESM2_rcp45_2006_2100, CanESM2_rcp26_2006_2100, and 

CanESM2_historical_1961_2005. The CanESM2 directory contains 26 predictor variables used 

in the SDSM, as listed in Table 2.  

 
Table 2. CanESM2 predictor variables  

 

No File name Predictor names or 

variables 

No File name Predictor names or 

variables 

1 ncepmslpgl.da

t 

Mean sea level pressure 14 ncepp5zhgl.dat 500 hPa Divergence of 

true wind 

2 ncepp1_fgl.dat 1000 hPa Wind speed 15 ncepp850gl.dat 850 hPa Geopotential 

3 ncepp1_ugl.da

t 

1000 hPa Zonal wind 

component 

16 ncepp8_fgl.dat 850 hPa Wind speed 
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4 ncepp1_vgl.da

t 

1000 hPa Meridional 

wind component 

17 ncepp8_ugl.dat 850 hPa Zonal wind 

component 

5 ncepp1_zgl.da

t 

1000 hPa Relative 

vorticity of true wind 

18 ncepp8_vgl.dat 850 hPa Meridional 

wind component 

6 ncepp1thgl.dat 1000 hPa Wind 

direction 

19 ncepp8_zgl.dat 850 hPa Relative 

vorticity of true wind 

7 ncepp1zhgl.da

t 

1000 hPa Divergence of 

true wind 

20 ncepp8thgl.dat 850 hPa Wind 

direction 

8 ncepp500gl.da

t 

500 hPa Geopotential 21 ncepp8zhgl.dat 850 hPa Divergence of 

true wind 

9 ncepp5_fgl.dat 500 hPa Wind speed 22 ncepprcpgl.dat Total precipitation 

10 ncepp5_ugl.da

t 

500 hPa Zonal wind 

component 

23 nceps500gl.dat 500 hPa Specific 

humidity 

11 ncepp5_vgl.da

t 

500 hPa Meridional 

wind component 

24 nceps850gl.dat 850 hPa Specific 

humidity 

12 ncepp5_zgl.da

t 

500 hPa Relative 

vorticity of true wind 

25 ncepshumgl.dat 1000 hPa Specific 

humidity 

13 ncepp5thgl.dat 500 hPa Wind direction 26 nceptempgl.dat Air temperature at 2 m 

Source: CCDS, 2020 
 

 

 

Figure 4. Zip file for downloading the CanESM2 predictor variable 

 

The selection of variables may influence the prediction and outcome, as various 

atmospheric predictors can impact local variables (Hassan & Harun, 2011). In addition, the 

selected predictor variable must exhibit sensibility and maintain a consistent, strong correlation 

with the predictor, as accurately modelled by the GCM (Wilby & Dawson, 2007). The CanESM2 

has been extensively employed in several studies to stimulate climate change in various study areas 

(Ahmadi et al., 2019; El et al., 2023; Goodarzi & Faraji, 2022; Huang et al., 2016; Mahdaoui & 

Asmlal, 2023; Munawar et al., 2022; Onarun et al., 2023; Onarun & Sittichok, 2023; Rana et al., 

2023; Rana & Adhikary, 2023; Siabi et al., 2021; Tukimat et al., 2019; Zarei et al., 2023).  Utilizing 

the SDSM software, the most optimal predictor variable is selected based on the analysis of linear 

correlation, partial correlation analysis, and scatter plots among predictor variables and predictors. 
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Subsequently, the MAR for each rain gauge station is generated for the future, and its distribution 

map is created. 

 

Mean Annual Rainfall mapping 

 

The results obtained from the SDSM software are integrated into ArcGIS to develop the 

distribution map based on the data from the seven stations within the study area. The pixel size 

used in ArcGIS for the study area is 10 meters, and each map contains 3,060,996 pixels, 

representing the total study area of 306.1 km2. Two interpolation methods, Kriging and Inverse 

Distance Weighting (IDW) were employed in ArcGIS to create the MAR distribution map. 

Subsequently, the distribution patterns obtained from these two methods were compared for 

analysis. The IDW interpolation technique is widely employed as a prevalent approach for data 

estimates and modelling purposes, including its spatial component (Borges et al., 2016). Numerous 

previous studies across various fields have utilized IDW to generate different types of rainfall 

distribution maps (Amirabadizadeh et al., 2016; Borges et al., 2016; Hong et al., 2018; Kabiri et 

al., 2013; Mwabumba et al., 2022; Yang et al., 2020; Yin et al., 2019). The IDW method uses a 

linearly weighted dataset combination to interpolate and generate cell values for every pixel in the 

map. The weight is calculated based on the inverse distance between the sampled points and the 

point of interest (Yang et al., 2020). The surface value is interpolated based on location-dependent 

variables. This method assumes that the influence of a variable decreases as it is farther away from 

its location sampled (ESRI, 2021a). 

The Kriging method computes a surface from scattered points with z-values through 

advanced geostatistical computations. Unlike another interpolation method in ArcGIS software, 

the Kriging tool stands out for its unique approach. The selection of the most effective method for 

developing the output surface in this method is based on considering the spatial behavior of the 

trend delineated by the z-values. IDWs are classified as a deterministic interpolation approach due 

to the smoothness of the resulting surface, determined directly from the surrounding measurements 

or specified mathematical formulas (ESRI, 2021b). On the other hand, Kriging presents the second 

classification of interpolation methods using the Geostatistical principle. This method is developed 

through statistical models incorporating autocorrelation or the statistical relationship between 

measured points. Consequently, geostatistical methods can provide prediction surfaces and offer 

prediction accuracy assessments. In the Kriging method, the output value for any location is 

subjected to a mathematical function tailored to the specific number or radius within the dataset. 

Kriging method is widely recognized as one of the standard methods used to develop variations of 

the rainfall distribution map across diverse research areas (Borges et al., 2016; Chen et al., 2019; 

Hu et al., 2020; Shou et al., 2018; Tukimat et al., 2019; Yendra et al., 2017). 

 

 

Results and discussion   

  

Validation of model 

 

The calibration of the SDSM model is conducted using a multiple regression equation, which is 

developed using atmospheric variables (the predictors) and daily weather data (the predictand) 

(Wilby & Dawson, 2007, 2015). The downscaling model for monthly rainfall at each station is 

developed using the predictor variables selected from the CanESM2 dataset. As per Hassan & 
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Harun (2011), a high correlation value is indicated by a strong correlation between predictors and 

predictands across all twelve months. The baseline period for the current study is established using 

the rainfall dataset collected from seven rain gauge stations within the study area, spanning period 

from 1990 to 2019. This baseline period is then subsequently divided into two distinct parts: the 

calibration period, covering the years 1990 to 1999, and the validation period, spanning from 2000 

to 2019. Based on the observed time series data inputs, the validation process generates synthetic 

daily weather data and multiple linear regression parameters. Notably, these parameters were not 

employed during the calibration phase. The summary of the comparison between observed and 

modelled annual rainfall is summarized in Table 3. The evaluation of environmental model 

performance can be conducted using various statistical indices, as outlined in the study by Bennett 

et al. (2013). These indices include Mean Absolute Error (MAE) and Root Mean Square Error 

(RMSE). This study validated the model's performance using the mentioned statistical index. The 

MAE and RMSE were calculated based on Equations 1 and 2.     

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑋𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑋𝑎𝑐𝑡𝑢𝑎𝑙

𝑛

𝑖=1
)

 

                                                

(1) 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑋𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑋𝑎𝑐𝑡𝑢𝑎𝑙|
𝑛
𝑖=1

      

                                                                     (2) 

 
Table 3. Comparison of observed and modelled rainfall for the validation phase (2000-2019) 

 

Station Tali Air Besar 

Sg. Pinang 

Pintu Bagan 

Air Itam 

Kolam Takongan 

Air Itam 

Rumah 

Kebajikan 

Month O M O M O M O M 

Jan 201.7 93.4 216.8 117.3 194.4 68.2 128.8 43.2 

Feb 151.1 88.3 171.6 64.3 170.9 65.5 134.4 45.7 

Mar 181.7 157.9 204.9 177.2 163.6 129.7 132.5 80.2 

Apr 179.9 228.0 175.2 203.3 160.0 137.0 135.8 141.6 

May 211.8 216.8 219.6 236.8 151.4 157.4 156.8 172.8 

Jun 201.5 176.3 194.0 166.2 176.2 161.9 134.0 117.9 

Jul 202.2 226.0 232.8 176.3 192.4 204.8 178.7 193.5 

Aug 201.5 278.1 198.7 220.9 161.3 284.1 175.6 184.9 

Sep 203.9 343.3 190.4 365.0 172.0 240.3 152.8 305.6 

Oct 205.6 389.1 264.3 358.0 187.2 299.3 163.7 337.4 

Nov 206.3 298.4 216.2 240.2 175.8 373.8 160.2 125.5 

Dec 222.2 141.3 251.2 104.4 164.1 112.5 145.7 73.0 

Total 2369 2637 2536 2430 2069 2234 1799 1821 

% of differences 11.3 4.2 8.0 1.2 

MAE 72.5 68.8 72.8 60.2 

RMSE 88.4 86.2 92.8 81.0 

 
Station Klinik Bkt. Bendera Kolam Bersih Pulau 

Pinang 

Lorong Batu 

Lanchang 

Month O M O M O M 

Jan 215.3 73.3 177.8 69.6 166.9 103.1 

Feb 180.2 80.5 159.2 72.3 137.7 69.8 
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Mar 190.3 146.9 168.9 153.0 174.8 124.9 

Apr 215.6 214.4 173.4 172.0 175.9 173.5 

May 162.3 202.9 198.8 195.7 183.8 212.3 

Jun 183.5 179.5 198.5 186.5 177.0 157.1 

Jul 174.6 234.0 185.5 231.0 152.2 164.5 

Aug 188.8 267.3 172.3 280.2 215.5 229.0 

Sep 193.2 375.0 166.2 340.1 181.7 326.6 

Oct 215.3 332.5 201.3 319.9 181.6 342.2 

Nov 188.1 327.7 206.6 229.3 190.5 260.8 

Dec 212.1 157.2 166.3 120.1 184.7 110.1 

Total 2319 2591 2175 2370 2122 2274 

% of differences 11.7 9.0 7.1 

MAE 80.2 61.9 59.1 

RMSE 96.9 81.8 76.4 

         *O=Observed   

           M=Modelled 

 

The result revealed a satisfactory agreement between the observed and modelled annual 

rainfall at the seven stations. The observed and modelled data disparity ranged from approximately 

1.24% to 11.73%, with an average deviation of 7.50%. Specifically, the model yielded average 

values of 67.91 mm/month and 86.21 mm/month, falling within the range of 59.1-80.2 mm/month 

and 59.1-76.4 mm/month for MAE and RMSE, respectively. During the validation period, the 

highest and lowest errors between the modelled and observed MAR occurred at the Klinik Bukit 

Bendera and Lorong Batu Lanchang stations, respectively. The Klinik Bukit Bendera station is at 

the highest elevation among all the stations. 

In contrast, the Lorong Batu Lanchang station is at the third-lowest elevation, 8 meters 

above sea level. Pintu Bagan Air Hitam has the lowest elevation but recorded the highest MAR 

observation. However, this station exhibited a unique pattern where the modelled MAR was 

smaller than the observed, deviating from the general observed at other stations. All the other 

stations displayed a consistent pattern where the modelled MAR exceeded the observed value.     
 

 

Rainfall Projection under Climate Change 

 

The GCM projections are determined by the RCP framework (Moss et al., 2010). The future 

climatic conditions are simulated using the SDSM model under two different RCP scenarios: RCP 

4.5 and RCP 8.5 for 30-year return periods (2070-2099). The RCP 4.5 scenario considers utilizing 

technology and strategies to reduce greenhouse gas emissions to stabilize the total radiative forcing 

before 2100. Conversely, the RCP 4.5 scenario projects climate change, assuming that carbon 

dioxide emissions are maintained at the current rate (Kim et al., 2015). Under the RCP 8.5 scenario, 

greenhouse gas concentrations and radiative forcing levels are simulated at their highest levels. 

Kim et al. (2015) clarify that in RCP 8.5, the climate is projected, assuming that current carbon 

dioxide emission levels undergo drastic changes. The comparison between observed MAR and 

modelled MAR for the future period under RCP 4.5 and RCP 8.5 for the seven stations is illustrated 

in Figure 5 (a-g) and summarized in Table 4. 

Overall, the modelled MAR is projected to increase (2070-2099) under RCP4.5 and 

RCP8.5 scenarios. This finding aligns with the study conducted by  Lal et al. (2012), where they 

observed a similar increase in annual rainfall in the future within the northern mid-latitudes, a 

correlation with the study area. The observational results for the period (1990-2019) indicated that 
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the Pintu Bagan Air Hitam station had the highest MAR value, while the Rumah Kebajikan Station 

had the lowest value. The average value of the observed MAR for all the stations is 2350.256 mm. 

Notably, only the Rumah Kebajikan station recorded a MAR value below 2000 mm, whereas all 

the other stations exhibited values exceeding 2000 mm. Under RCP4.5, all the stations are 

projected to receive a MAR of more than 2100 mm, with an average value of 2555.29 mm. The 

Klinik Bukit Bendera station is expected to receive the highest MAR, while the Kolam Takungan 

Air Itam station indicated the lowest value for both RCP conditions in the future. Under RCP8.5, 

all the stations are anticipated to receive a MAR of more than 2200 mm, with an average value of 

2701.091mm.        

In general, the future rainfall changes range between 4.76% and 33.36%, with an average 

change of 8.6% under RCP 4.5 and 14.93% under RCP 8.5. The future rainfall in Peninsular 

Malaysia will change from -6% to +11% (NAHRIM, 2013). Three stations, namely Rumah 

Kebajikan, Klinik Bukit Bendera, and Kolam Bersih Pulau Pinang showed an increase of more 

than 11% in future rainfall under both RCP scenarios. All the remaining stations exhibited a 

notable change in MAR in alignment with the findings of NAHRIM (2013), except for the Tali 

Air Besar Sg Pinang Station. The Tali Air Besar Sg Pinang station experienced a MAR increment 

of more than 11% under RCP8.5. Notably, the MAR projections under RCP4.5 and RCP8.5 

indicated increased rainfall for the future (2070-2099) across all the stations, except for The Pintu 

Bagan Air Hitam. This is surprising given the fact that Pintu Bagan Air Hitam had experienced 

the highest MAR value during the observation period. Indeed, Pintu Bagan Air Hitam displayed a 

deviating pattern during the validation phase, being the sole station where the observed MAR 

exceeded the modelled value. In addition, it exhibited the highest observed MAR value for the 

calibration period.  

Kolam Bersih Pulau Pinang Station exhibited the highest increment value for the future 

period, while MAR for Pintu Bagan Air Itam Station is anticipated to decrease slightly under both 

RCPs. Surprisingly, the observed amount did not significantly influence the percentage increment 

of MAR for the future period under RCP4.5 and RCP 8.5. For instance, Pintu Bagan Air Itam 

Station had the highest observed value, but the projection was the lowest for both RCP types in 

the future period. Most stations indicated a higher percentage of rainfall change under RCP 8.5 

than under RCP 4.5. The exceptions were Kolam Takongan Air Itam and Lorong Batu Lanchang 

stations, which displayed almost similar increment percentages of MAR, differing by less than 

0.4% under both RCPs. 

The predictions made by Lal et al. (2012) indicated that extreme weather conditions are 

likely to cause significant alterations in both rainfall intensity and seasonality due to the expected 

rise in extreme weather events. This study concurs with these findings, suggesting a projected 

increase in rainfall levels by approximately 70-600 mm annually across Penang Island. However, 

it is noteworthy that the Pintu Air Bagan Air Itam station is anticipated to experience a reduction 

in MAR by 90-120 mm. Similar trends of increased rainfall in the future were also observed in 

studies conducted by  Syafrina et al. (2017) and Tan et al. (2017). Conversely, the Malaysian 

Meteorological Department (2009) and Sammathuria & Ling (2009) predicted a future reduction 

in MAR for Malaysia, introducing an element of inconsistency and uncertainty regarding future 

rainfall patterns. This variability aligns with the findings of Abdul Rahman (2018) and Tang 

(2019), emphasizing that future rainfall patterns exhibit inconsistency in pattern concentration and 

quantity. These disparities underline the complexity and uncertainties of predicting future weather 

patterns, particularly in changing climate conditions.  
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Figure 5. Mean monthly rainfall for observed (1990-2019) and modelled future period (2070-2099) under RCP 4.5 

and RCP 8.5: (a) Tali Air Besar Sg. Pinang, (b) Pintu Bagan Air Itam, (c) Kolam Takongan Air Itam, (d) Rumah 

Kebajikan, (e) Klinik Bkt. Bendera, (f) Kolam Bersih Pulau Pinang, and (g) Lorong Batu Lanchang. 

 

Rainfall modelling is an inherently complex task due to the involvement of conditional 

processes influenced by intermediary factors, such as humidity and cloud cover. Several studies 

have highlighted the complexity of downscaling rainfall data (Hassan & Harun, 2011). The 

intricate nature of these processes raises questions about the reliability of projected rainfall patterns 

in response to climate change, as evidenced by discrepancies observed in previous studies. The 

uncertainties in predicting future weather events derive from the limitations of the model in 

capturing periodic ocean-atmospheric oscillations, notably the Indian Ocean Dipole (IOD) and 

https://doi.org/10.17576/geo-2024-2002-01


Geografia-Malaysian Journal of Society and Space 20 issue 2 (1-23)  

© 2024, e-ISSN 2682-7727 https://doi.org/10.17576/geo-2024-2002-01                                 13 

 

 

extreme weather events such as La Niña and El Niño, which are linked with the past extreme 

weather events (Tang, 2019).  

 
Table 4. Comparison of observed and modelled rainfall for the future period 

 

No Station Elevation 

(m) 

Average Annual Rainfall (mm) % of increment 

Observed 

(1990-

2019) 

RCP 4.5 

(2070-2099) 

RCP 8.5 

(2070-2099) 

RCP 4.5 

(2070-2099) 

RCP 8.5 

(2070-2099) 

1 Tali Air Besar 

Sg. Pinang 

51 2635.593 2876.587 3000.677 9.14382 13.85204 

2 Pintu Bagan Air 

Itam 

0 2529.517 2438.127 2409.216 -3.61291 -4.75586 

3 Kolam Takongan 

Air Itam 

205 2195.4 2266.543 2264.843 3.240541 3.163112 

4 Rumah 

Kebajikan 

7 1788.273 2157.79 2385.072 20.66334 33.37295 

5 Klinik Bkt. 

Bendera 

626 2611.87 2997.761 3331.33 14.77452 27.5458 

6 Kolam Bersih 

Pulau Pinang 

52 2437.003 2820.419 3216.127 15.73308 31.97055 

7 Lorong Batu 

Lanchang 

8 2254.135 2308.806 2300.375 2.42537 2.05134 

Average 2350.256 2552.29 2701.091 8.596283 14.92755 

 

Mean Rainfall Distribution map 

 

The rainfall distribution map for the observation period and the future period under RCP 8.5 and 

RCP 4.5 is shown in Figure 6, and its comparison is summarized in Table 5. The distribution map 

of MAR for the observation period (1990-2019) indicated minimal differences in average mean 

values, with slight variations in minimum and maximum values between the Kriging and IDW 

methods. Compared to the MAR values projected for rainfall under RCP 4.5 and RCP 8.5 for the 

future period (2070-2099), all mean, minimum, and maximum values showed minimal disparities, 

remaining below 1%. The MAR distribution map for the observation period indicated that the 

study area received almost 40% of the rainfall within the 2400-2500 mm range for both 

interpolation methods. Three predominant MAR classes ranging from 2200-2500mm constituted 

a cumulative 92.44% and 75.75% of the study area for the observation period under the Kriging 

and IDW methods, respectively. However, these dominant classes are expected to decrease in the 

future drastically. The cumulative percentage of the area covered by these classes is projected to 

decrease by 2.85% to 38.41%, with the 2400-2500 mm class showing the highest reduction. This 

signals a significant shift in the rainfall distribution pattern, indicating the impact of climate change 

on the region's rainfall levels. 

The MAR is predicted to increase for both RCPs based on the map shown in Figure 6. The 

areas receiving MARs of more than 2500 mm will undergo drastic changes, with 87.73% (Kriging) 

and 61.2% (IDW) of the study expected to receive MAR exceeding 2500 mm under RCP 4.5. 

Furthermore, under RCP 8.5, even greater changes are anticipated, with 94.43% and 91.3% for the 

Kriging and IDW methods, respectively. Both the Kriging and IDW methods comprise a similar 

number of MAR classes, but the distribution area varies for each class under both RCPs. 

Specifically, under the Kriging method for RCP 4.5, a significant portion of the area (69.36%) is 

projected to receive 2500-2600 mm of MAR. 
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Conversely, under IDW, this rainfall class only represents 23.83% of the area, whereas the 

highest class is 2400-2500 mm, representing 25.37 % of the study area. The dominant mean rainfall 

class with the Kriging method will shift to 2500-2600 mm and 2700-2800 mm for RCP 4.5 and 

RCP 8.5, respectively. This single class represents almost 65% of the rainfall distribution in the 

future for both RCPs with the Kriging method, which contrasts with the IDW method. Rainfall is 

spread across several dominant classes to create a more even distribution pattern. 

 
Table 5. Comparison of mean annual rainfall distribution using Kriging and IDW method for observation and future 

period 

 
Mean 

Annual 

Rainfall 

(mm) 

Observation (1990-2019) RCP 4.5 (2070-2099) RCP8.5 (2070-2099) 

Kriging 

Area (km) 

IDW 

Area (km) 

Differ

ent 

(%) 

Kriging 

Area (km) 

IDW 

Area (km) 

Differ

ent 

(%) 

Kriging 

Area (km) 

IDW 

Area (km) 

Differ

ent 

(%) 

1700-

1800 

NA 0.11 

(0.04%) 

-0.04 NA NA 

1800-

1900 

1.51 

(0.49%) 

-0.49 

1900-

200 

3.87 

(1.26%) 

-1.26 

2000-

2100 

0.06 

(0.02%) 

7.84 

(2.56%) 

-2.54 

2100-

2200 

17.95 

(5.86%) 

20.4 

(6.66%) 

-0.8 0.29 

(0.09%) 

1.18 

(0.39%) 

-0.29 

2200-

2300 

40.82 

(13.34%) 

51.28 

(16.75%) 

-3.42 3.48 

(1.14%) 

9.57 

(3.13%) 

-1.99 0.15 

(0.05%) 

0 (0.00%) 0.05 

2300-

2400 

115.14 

(37.615) 

64.95 

(21.22%) 

16.4 12.34 

(4.03%) 

30.34 

(9.91%) 

-5.88 4.46 

(1.46%) 

0.69 

(0.23%) 

1.23 

2400-

2500 

127 (41.49 

5) 

115.64 

(37.78%) 

3.71 21.44 

(7.01%) 

77.65 

(25.37%) 

-18.36 12.42 

(4.06%) 

8.01 

(2.62%) 

1.44 

2500-

2600 

5.13 

(1.68%) 

36.22 

(11.83%) 

-10.16 212.32 

(69.36%) 

72.95 

(23.83%) 

45.53 17.9 

(5.85%) 

32.92 

(10.75%) 

-4.91 

2600-

2700 

NA 4.29 

(1.40%) 

-1.4 33.42 

(10.92%) 

56.18 

(18.35%) 

-7.43 33.93 

(11.08%) 

94.76 

(30.96%) 

-19.87 

2700-

2800 

NA 14.5 

(4.74%) 

43.03 

(14.06%) 

-9.32 199.31 

(65.11%) 

52.81 

(17.25%) 

47.86 

2800-

2900 

6.58 

(2.15%) 

13.08 

(4.27%) 

-2.12 18.7 

(6.11%) 

13.54 

(4.42%) 

1.68 

2900-

3000 

1.73 

(0.56%) 

2.11 

(0.69%) 

-0.13 8.61 

(2.81%) 

49.32 

(16.11%) 

-13.3 

3000-

3100 

NA 4.26 

(1.39%) 

41.92 

(13.69%) 

-12.3 

3100-

3200 

3.6 (1.18%) 9.26 

(30.2%) 

-1.85 

3200-

3300 

2.61 

(0.85%) 

2.45 

(0.80%) 

0.05 

3300-

3400 

0.17 

(0.05%) 

0.43 

(0.14%) 

-0.09 

Min 2094.51 1788.28 14.62 2158.31 2157.79 0.02 2265.43 2264.84 0.03 

Mean 2374.76 2364.91 0.41 2570.56 2554.35 0.63 2714.28 2691.53 0.84 

Max 2523.64 2635.59 -4.44 2997.31 2997.76 -0.01 3330.75 3331.33 -0.02 

 

Various maps have been published, illustrating the projected rainfall and temperature for 

the future (Amirabadizadeh et al., 2016; Kabiri et al., 2013; Lim et al., 2009; Pour et al., 2014). 

These maps provide valuable insights into how rainfall patterns evolved, notably in response to 

increased human activity during the twentieth century. The correlation between these changes and 

anthropogenic activities, which lead to higher aerosol concentration and the greenhouse effect, 
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contributes to a projected increase in rainfall in the future. The output of the SDSM for two distinct 

RCPs consistently points in the same direction. It anticipates significant alterations in rainfall 

distribution, with an overall rise in MAR. However, the increase in rainfall under RCP 8.5 is 

notably higher. This is the importance of greenhouse gas concentration and radiative forcing levels, 

simulated at their peak under RCP 8.5, reflecting drastic shifts in current carbon dioxide emissions. 

Conversely, the greenhouse effect is anticipated to decrease, assuming carbon dioxide emissions 

remain stable at current rates under RCP 4.5, owing to technological advancements and policy 

implementations.  

The study's findings underscore the substantial differences between the two RCP scenarios. 

The average increment in rainfall is 8.6% for RCP 4.5 and 14.9% for RCP 8.5, as detailed in Table 

4. Notably, the percentage increment in rainfall under RCP 4.5 is nearly half of that projected 

under RCP 8.5. Consequently, the distribution of MAR in Penang Island is markedly altered under 

RCP 8.5, with a substantial increase in areas receiving higher rainfall. These insights illuminate 

the critical impact of greenhouse gas emissions scenarios on regional climate patterns, providing 

crucial information for informed decision-making and adaptive strategies.  
Syafrina et al. (2017)) used the Advanced Weather Generator model as a climate model 

and found out that hourly and 24-hour extreme rainfall in Malaysia was expected to increase during 

the projection period (2081-2100) with a wider spatial distribution under the RCP 6.0 scenario. 

Tan et al. (2017) also found the same trend, where the projection of MAR using GCM shows an 

increment under RCP 2.6, 4.5, and 8.5 climate scenarios. Another study by Adib & Harun (2022) 

utilized a machine learning approach and found that monthly rainfall was projected to increase 

under three different shared socioeconomic pathways (SSPs). All those findings show a significant 

trend compared to the results of the current study. However, a report by the Malaysian 

Meteorological Department (2009) shows contradictory findings where Malaysia's annual rainfall 

modelled using the PRECIS regional climate model was predicted to reduce radically in the future 

period. These uncertainties were significant to the findings by Abdul Rahman (2018) and Tang 

(2019), who highlighted that rainfall continuously shows an inconsistent pattern in the future with 

variations in concentration and amount. 

The changes in the MAR pattern under the effect of climate change lead to more frequent 

floods, which is a crucial challenge for water resources management. Climate change can heighten 

the vulnerability of water infrastructure, including dams, levees, and irrigation systems, to severe 

weather phenomena such as floods, storms, and landslides. These might undermine water 

resources management. Adaptive water management systems must be developed and put into 

practice in response to climate change in order to deal with the increment of rainfall intensity (Noor 

et al., 2018). This includes making investments in water-efficient technology, enhancing water 

distribution and storage infrastructure, and restoring natural ecosystems that control the quantity 

and quality of water available. In addition, the effects of climate change on water resources can be 

mitigated by maintaining and restoring natural ecosystems, such as riparian zones, wetlands, and 

forests. These natural ecosystems can improve water quality, control water flows, and encounter 

the erosion and sedimentation effect due to increasing rainfall. The current study's projection can 

be utilized for long-term planning and decision-making processes for efficient water resources 

management in response to climate change.  
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Figure 6. Mean Annual Rainfall Distribution Map Under: a) Observation (Kriging); b)Observation (IDW);  

c)RCP4.5 (Kriging); d)RCP4.5 (IDW); e)RCP8.5 (Kriging); f )RCP8.5 (IDW) 

 

 

Conclusion  

 

The SDSM model, developed using data from the seven observation stations, underwent rigorous 

validation and comparison with observed data, resulting in a notable agreement with a disparity 

ranging from 1.24% to 11.73%, averaging 7.50%. This significant correlation between predictors 
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and selected predictors underscores the robust performance of the developed SDSM model. 

The study successfully projected MAR for the future (2070-2099) under two emission 

scenarios: RCP 4.5 and RCP 8.5. The findings indicate a consistent increase in rainfall in the future 

under both RCP conditions. However, MAR under RCP 8.5 demonstrates a substantially higher 

increment, nearly twice that under RCP 4.5. This emphasizes the critical importance of considering 

RCP 8.5, given the continuous rise in emissions. Understanding and preparing for this worst-case 

scenario is paramount, as it represents the higher end of possible climate change impacts. 

Stakeholders must implement strategies to address the significant changes anticipated under RCP 

8.5. 

The study also generated rainfall distribution maps, revealing expected changes in rainfall 

patterns. Under the Inverse Distance Weighting (IDW) method, rainfall distribution appears more 

uniform, with less dominance of specific rainfall classes than the Kriging method. In the future, 

areas receiving MAR above 2500 mm will increase significantly, ranging from 61.2% to 94.43%. 

Notably, the Kriging method exhibits a higher percentage of distribution value increment than 

IDW under both RCP conditions. 

 These findings underscore the urgency for comprehensive climate change adaptation 

strategies, emphasizing the need to prepare for intensified rainfall scenarios, especially under the 

RCP 8.5 emissions trajectory. Such preparedness ensures that mitigation efforts are aligned with 

the most challenging climate change scenarios, fostering resilience and sustainability in evolving 

climate patterns. 

The anticipated increase in rainfall in the future could potentially trigger severe 

environmental disasters such as floods, landslides, and debris flows. The study's findings have 

been effectively transformed into visual representations, including graphs, tables, and maps, 

facilitating easy interpretation to enhance the understanding of these projections. Local authorities 

and relevant stakeholders in Penang Island could leverage the insights from this study to maintain 

their preparedness and response strategies in the face of climate change. The study is a foundational 

resource for exploring the intricate relationship between climate change and its diverse impacts, 

including geo-hydrological hazards, environmental shifts, and water security on the Island. 

However, it is essential to acknowledge the uncertainties inherent in climate change 

projections. Future studies should encompass a broader spectrum of climate scenarios to address 

these uncertainties comprehensively. While the current study focused on RCP4.5 and RCP8.5, 

incorporating other relevant emission scenarios like socioeconomic pathways 126, 245, 370, and 

585 would provide a more thorough understanding of potential climate variations. Additionally, 

enhancing the study's spatial representation by increasing the number of rainfall stations across 

different parts of Penang Island is advisable. This expansion would improve the accuracy and 

performance of rainfall distribution maps developed through interpolation methods in ArcGIS. By 

considering these recommendations in future research endeavors, a more robust and detailed 

understanding of the region's climate dynamics and associated hazards can be attained, aiding in 

more effective climate adaptation and mitigation strategies. 
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