Jurnal Antarabangsa (Teknologi Maklumat) 3(2002): 73-87

Conceiver; Not Just Another Program
Understanding System

ABDULLAH MOHD ZIN & HANI AHMAD AL-OMARI

ABSTRACT

A number of program understanding systems have been developed over the
past decades. Although the development of these systems have solved many
issues in program understanding, they are not widely used. In most cases,
these systems are only being used by their developers. At UKM, we have
embarked into developing a program understanding system that is “usable",
called CONCEIVER. The design and implementation of CONCEIVER is
described in this paper.

ABSTRAK

Beberapa sistem pemahaman aturcara telah dibangunkan dalam beberapa
dekad yang lepas. Walaupun pembangunan sistem ini telah menyelesaikan
banyak isu yang berkaitan dengan pemahaman aturcara, kebanyakan sistem
ini tidak digunakan dengan meluas. Dalam kebanyakan kes, sistem ini hanya
digunakan oleh pembangun sistem tersebut sahaja. Di UKM, kami telah
memulakan usaha untuk membangunkan satu sistem pemahaman aturcara
vang “boleh diguna’, vang dikenali sebagai CONCEIVER. Kertas ini
membincangkan rekabentuk dan implementasi CONCEIVER.

INTRODUCTION

Research in the process of understanding a program is motivated by two
different reasons. One group of researchers are from the cognitive psychology
group and their main interest is to find out exactly what knowledge and
understanding expert programmers have that novices don't. Another group of
researchers are from the software maintenance group whose main aim is to
build up a system which can automatically identify and repair errors in a
program.

The first known research in program understanding was made by
Halstead (Halstead 1977). In his theory of software science, Halstead argued
that algorithms have measurable characteristics similar to physical laws. He
further argued that useful measures could be derived from a simple count of
distinct operators and operands.

Most of researchers working in this area, however, disagree that the
Halstead model is an accurate representation of mental processes for an
experienced programmer (Curtis et al. 1984). They do not believe that
experienced programmers work at the level of operators and operands when
they are developing a program. They argue that programmer’s thoughts
represent chunks of operators and operands at least at the level of an
expression and often at a level where numerous expressions have been
compiled to form a function.

Many mental models have been produced to represent the mental
processes of a programmer. These models fall under one of two categories.
The first category views the understanding of programs as a successive
modification of a hypothesis in the programmer’s mind. The second category
views program understanding as identifying stereotyped fragments of code
and relating them to each other.

In the 1970s and 1980s, most of program understanding systems were
developed based on the first category of mental models. Some of the systems
in this category are Intelligent Program Analysis (Ruth 1974), PROUST
(Johnson and Soloway 1985) and PUDSY (Lukey 1980). However, these
systems were oriented toward specific domains because these systems need
descriptions of the goals in order to operate. Due to this reason, most of these
systems were developed in a leaming environment, for example to support
students in the process of understanding and debugging programs.

By the late 1980s and 1990s, the direction of research shifted towards the
second category of mental models. Systems developed based on this category
have been demonstrated to have a more general understanding capability and
thus can be used to software maintainer to understand real life software.
Some of the systems which are based on this mental model are Recognizer
(Wills 1987), BAL/SRW (Kozaczynski 1991) and Program Analysis Tool
(Harandi and Ning 1990).

Although the development of these systems have solved many issues in
program recognition and knowledge representations, they are still in the
experimental stage (O'Hare and Troan 1994). Unlike other programming
tools, these systems are still not being used widely. In most cases, these
systems are only being used by the developers of the systems. In order to
address this problem, we have embarked on developing a program
understanding system which would be “usable”, called CONCEIVER

CHARACTERISTICS OF A USABLE PROGRAM UNDERSTANDING SYSTEM
Following McCall et al. (1977), we define “usability” as the effort required

by a user to leamn, operate, prepare input and interpret the output of a
program. The more effort required the less “‘usable” the program is.

74

There are two different types of users for a program understanding
system. The first type of user is the end-user, who uses the system in order
to understand a particular piece of code. The second type of user is the
knowledge engineer, who is responsible for codifying stereotyped fragments
of code into the knowledge base. In the area of program understanding, the
stereotyped fragments of code is normally called as “plan™ and the
knowledge base that contains these plans is called the “plan base”. The
relationship between the system, knowledge engineer and end-user is shown

Plan Base

Plan Description
Knowledge End
. System
Engineer User
Program

FIGURE 1. Users of the system

in Figure 1.
Most program understanding systems have provided support for both

types of user.

A. CODE RECOGNITION

The first characteristic of a “‘usable” program understanding system is that it
must provide support for recognizing program code. The system will process
the program code that is submitted by the end-user and generate documentation
that describes the functionality of the program. Some systems have even
provided support for recognizing at least some parts of the program if full
recognition is not possible, recognizing overlapped implementation and
recognizing non-localized code.

B. PLAN BASE MANAGEMENT

For knowledge engineers, most of the systems have provided support to
enable knowledge to be entered into the plan base. A knowledge engineer
writes plans based on the specifications of the programs and submits them to
the system. The system will check the correctness of the plan. If the plan is
correct, the system will generate a conceptual representation of the plan and
store it in the plan base.

Ideally, a program understanding system should be a general-purpose
system. Thus, the system must be equipped with enough plans in its plan base
so that it is capable of recognizing all types of programs. However, this is an

75

impossible hope as new programs are written every day to solve new
problems. Even if this is possible, the plan base will be very large and thus
reduce the efficiency of the system.

A more “usable” and “practical” program understanding system must
operate within a specific domain. The knowledge engineer should be
informed about the domain so that he/she can equip the system with
necessary plans in the plan base. Thus, for a program understanding system
to be usable, it must provide all necessary support for the knowledge
engineer to enter, update and organize plans in the plan base according to the
domain in which it is suppose to operate. Although this is recognized as an
important feature of a program understanding system, so far it has not been
incorporated in any of the available systems (Wills 1987). Without this
feature, the acquisition of new plans will be difficult and hence limit the
usability of the system.

C. MINIMUM AMOUNT OF KNOWLEDGE

The real strength of a knowledge-based system is its ability to deduce
information based on a minimum amount of knowledge. A program
understanding system, for example, needs to identify program code that may
occur in many different forms. However, it is not possible for the system to
store all of these different forms in the plan base. Thus, the system must b
able to understand a program if one form of the program code is available in
the plan base. In order to enable the system to understand a program code
that appears in a different form, some methods of transformation need to be
done.

D. PROGRAMMING LANGUAGE INDEPENDENT

Programs can be written using many different programming languages. Thus,
another important characteristics of a “usable” program understanding system
is programming language independence, that is, the system should be capable
of recognizing codes regardless of the programming language that is used for
writing the program.

KNOWLEDGE REPRESENTATION

The first step in designing a “‘usable” program understanding system is the
design of a conceptual model to represent programs and algorithmic cliches
in the knowledge base. The design of the plan base must be done properly
so as to enable the system to possess the characteristics that have been
explained earlier. To support programming language independence, the plan
must be represented by a language independent formalism. To allow for
transformation, this formalism must be flexible and easily manipulated.

76

Rich (1981) has proposed the concept of plan calculus as a formal
representation of program and algorithmic cliches. Software plans are
hierarchical descriptions of computations. Each level of a plan is defined by
a set of parts, connections and constraints. In the plan calculus, the parts are
operations, tests or data. Connections are expressed by control and dara flow.
Constraints in the plan calculus include the preconditions and post-conditions
of operations and test, and the invariants of data representation.

The plan formalism adopted in this work is greatly influenced by the
plan formalism used by Kozacynski (1992) with some extensions and
modifications. The plan formalism adopted by Kozacynski is greatly
influenced by the plan calculus. However, Kozacynski's formalism is easier
to use, highly compact and easy to expand. In this formalism, a plan is
divided into three parts: header, components and constraints. The header
contains the plan name and its parameters. The components part contains the
body of the plan. The constraints part contains the data and control flow
relations between the plan’s components.

One main weakness of Kozacynski's formalism is that the expression of
plans at the statement level is language dependent. Introducing a new
programming language implies the addition of hundreds of new plans to
represent the knowledge about statements in that particular language. In our
formalism, this weakness is eliminated by introducing the concept of a basic
plan. Basic plans are plans that deal directly with the parse tree of the
program. Thus, basic plans can be viewed as a mapping interface between a
programming language and the bottom levels of the plan base. Some of the
basic plans defined in CONCEIVER are shown in Table 1.

TABLE |. Some Basic Plans

Plan Number Plan Name Function - To recognize
1 Plus_Operator ‘+' operator
2 Minus_Operator *-* operator
3 Multiply_Operator "*' operator
4 Divide_Operator ‘/" operator
5 Equal_Operator ‘=" operator
6 Greater_Operator '>" operator
7 Less_Operator ‘<’ operator
8 And_Operator *AND’ operator
9 Int_Divide_Operator ‘DIV" operator
10 Greater_Or_Equal Operator ‘>=" operator

An example of a plan is shown in Figure 2. A plan must start with a
unique number. Following the plan number is the plan name. A set of plans
that are supposed to perform the same computation must use the same name.
After the plan name, the plan parameters (if any) should be expressed. The

77

declaration of parameters is done in the data structure part. Notice that more
than one data type can be included which implies that the parameter can be
used for more than one data type. The body of the plan comes after the
reserved word “Components”,

101 Assign_a_Constant (Varl, S$Const)
Data_Structure
Varl: Integer, Real, Char;
$Const: Integer, Real, Char
Components
Operationl: Variable(Varl)
Operation2: Assign Operator
Operation3: Constant ($Const)
Constraint
Root (Operation2)
LeftChild (Operationl)
RightChild (Operation3)

FIGURE 2. Assign_A_Constant plan

SYSTEM ARCHITECTURE

The system architecture for CONCEIVER is shown in Figure 3. The whole
system consists of five components: a user interface, infrastructure tools, an
understanding inference, a document generator and a plan base. Infrastructure
tools consists of one or more parsers and a transformer.

9]
Plan Base Parser S
E
R

Transformer Pagcal . End User
/ Parser N
T
Understanding Harser E
Inference R
F
\ :
Document c
Generator E

FIGURE 3. The Architecture of CONCEIVER: End-user perspective

A. PARSER

The main role of a parser is to translate a source program into a language-
independent representation that is used by the plan base. The translation

78

process can be done by providing the appropriate translator. For example, to
understand a Pascal program, a Pascal translator need to be provided.

Besides checking the syntactic correctness of the program, the translator
performs two transformation tasks: expression simplification and programming
constructs normalization,

As we have mentioned earlier, program code can be represented in many
different forms. One of the reasons for the existence of many different forms
is because an expression can be expressed in many different ways. Expressions
(9 *2), (9+9), (20 - 2), (90/5) are all equivalent. Since it is not possible to
store all of these similar expressions in the plan base, there is a need for these
operations to be reduced to a normal form. The normalization of expressions
involves four types of activities: evaluating constant expressions, simplification
of algebraic expressions, term rearrangement and reducing Boolean
operators.

Another reason for the existence of these different forms is the variety
of similar programming constructs that are provided by programming
languages. Pascal, for example, provides two constructs for selection: the
if-then-else statement and the CASE statements, and three constructs for
loops: the for statement, the while statement and the repeat statement. To
reduce the need for storing too many plans in the plan base, all of these
constructs are also normalized to the normal form.

The parser produces three outputs: a parse tree, a flow graph and a data
flow analysis. A parse tree is normally used as an intermediate representation
of program code. Compilers normally generate the object code by first
generating the parse three. Since a tree structure can easily be restructured,
it is the most suitable representation for producing optimised object code. A
variation of a parse tree is called a syntax tree. A syntax tree is a tree in
which each leaf represents an operand and each interior node represents an
operator, A parse tree generator in CONCEIVER produces the syntax tree for
each of the program statements. The output from this parse tree generation
is a forest of syntax trees.

A flow graph that is normally produced by a compiler assumes that each
basic block of the program is considered to be a node. A basic block is a
sequence of consecutive statements in which flow of control enter at the
beginning and leaves at the end without halting or the possibility of branching
in between. For our purpose, each node of the flow graph is a program
statement instead of a program basic block since the use of a basic block is
not suitable for recognizing non-localized code. Each node in the flow graph
is connected to the parse tree that i represents. For example, consider the
program in Figure 4(a). During the parsing of this program, some
normalization has been performed on its construct, particularly on the FOR
loop. The normalized form is shown in Figure 4(b).

79

(a) Program Facteorial (Input,Qutput);
const
N = 10;
var
i, fact integer;
begin
fact := 1;
for i = 2 to N do
fact := fact * 1;
end.
(b) Program Factorial (Input,Qutput);
const
N = 10;
var
i, fact integer;
begin
fact := 1;
i e 2
loop: 1f (i <= N} do begin
fact := fact * i;
L o= 4 + 13
goto loop;
end;
end.

FIGURE 4. (a) A simple program to compute factorial

(b) The

normalized program

The flow graph for the program is shown in Figure 5.

FIGURE 5.
80

Flow graph for factorial

Each node in the flow graph is associated with two pieces of information:
variables generated by the node and variables that are used in the node.
Figure 6 shows the data flow information which is associated with the flow
graph shown in Figure 5.

Generated = {Fact)

= (1
[}

T

Generated = {1}

Eprferated = {]
Fd = (LN}

Cenergled = {1}
LisedfF (1)

FIGURE 6. Data flow information associated with flow graph in Figure 5

B. TRANSFORMER

After the program has been translated into a language-independent
representation, it may need to undergo some additional transformation in
order to make it easier for the process of understanding the program. These
transformation does not affect the semantics of the program.

81

One area where transformation is especially needed is the case of
assignment statements, which may be written in many different forms. The
role of transformer in this case is to simplify the statement without affecting
the semantics of the program. In some cases, some of the statements need to
be deleted. For example, if a program contains statements such as

X:=86;
Y: =X+ 2;

[}

the transformer will change them into a single statement
Y:=8;

The first statement is deleted from the program (unless X is used
elsewhere in the program).

C. UNDERSTANDING INFERENCE

The understanding inference performs the process of unifying the program
code against the plan base. The unification process starts at the low level of
the program code. First operators and operands are recognized. The operators
and operands are combined to form a statement, After recognizing an
individual statement, CONCEIVER will attempt to find all valid chunks and
relates them together by unifying the code against plans in the plan base. The
output from the understanding inference is called a recognition hierarchy.

D. DOCUMENTATION GENERATOR

After the program code is understood, the documentation generator will be
invoked. The documentation generator uses the understanding hierarchy to
generate natural language description about the function of the program.

KNOWLEDGE ACQUISITION AND ORGANIZATION

The most important contribution of CONCEIVER and the one that
distinguishes it from other program understanding systems is the plan editor
that provides facilities for a knowledge engineer to acquire and organize
plans in the plan base. By using the plan editor, a knowledge engineer could
acquire plans, either via the plan preparation tool or via the automatic
acquisition of a plan. The structure of the plan editor is shown in Figure 7.

82

P
Understanding R
Transformer Parser E
Inference
P
A
R
Plan Language A Knowledge
Synthesizer T Engineer
I
Plan Base o
Plan Conceptual Plan | | N
Model Generator Parser

Plan Manager

Lroo-4

FIGURE 7. The architecture of the plan editor

A. PLAN PREPARATION TOOL

The plan preparation tool allows a knowledge engineer to input plans into the
plan base. It consists of four components: Data Structure Editor, Basic Plan
Editor, Plan Editing Pads and the Implementation Viewer,

The data structure part of a plan contains the variables used in the plan.
Each of these variables is tied to one or more data types. In order to ensure
language independent of the plan formalism, data types can be defined by the
user., The data types provided by a language are fed to the plan editor by
placing them in a file. For example, Pascal provides eleven data types: Array,
Boolean, Char, Integer, Real, Record, File, Set, Sub-range, String and
Pointer. These language-defined data types are placed in a file named
‘PASCAL.TYP".

Basic plans are plans that cannot be broken into smaller plans. Their
components can be obtained directly from the parse tree. Basic plans main
role is to act as the interface between program codes and plans.

Plan editing pads are collections of editors which can be used to write,
to browse and edit plans. Each part of the plan is contained in a separate
editing pad. The plan has been divided into six parts:

* The plan’s initial information editing pad contains three editing controls
that are used to specify the plan number, name and formal parameter.

* The plan’s data structure editing pad contains an editor for the plan
writer to specify the plan's data structure.

83

* The plan’s component editing pad allows the plan writer to specify the
plan’s components.

* The plan’s constraint editing pad allows the plan writer to specify the
plan’s constraints.

The implementation viewer allows plans to be viewed from different
perspectives. For example, plans can be browsed in the order they were
originally stored, and they can be viewed based on their implementations.
Since a plan can have more than one implementation, this perspective gives
a good cross-reference view of the content of the plan base.

B. PLAN EDITOR SUPPORT TOOLS

Apart from editing, writing plan also involves other activities such as parsing
and generating the plan conceptual representation. To enable these activities
to be carried out, the plan editor is supported by three other tools: the plan
parser, the plan conceptual representation generator and the plan manager.

The plan parser verifies the syntactic correctness of plans. The
techniques that is used to build the parser is similar to the techniques used
to construct any programming language parser.

The plan conceptual representation generator is implemented as an
extension to the parser. The objective of this generator is to generate the
representation that will be used during the process of unification.

Adding, deleting and modifying plans are major activities in the process
of program understanding. Most program understanding systems collect and
verify their plan in one-batch. Thus, in case a plan need to be changed, it will
affect all plan in the hierarchy. Simple alteration of a plan might require a
week of intensive work. The plan base manager is a tool that can restructure
the hierarchy of the plan base if any plan in the plan base is changed. For
example, if a plan is deleted from the plan base, all links to the plan will be
destroyed.

C. AUTOMATIC ACQUISITION OF PLANS

The plan preparation tool has provided a mechanism that enables a
knowledge engineer to enter and organize plans into the plan base. However,
writing plans is a tedious task. A knowledge engineer has to be familiar with
the language that is used in representing a plan. He must also find suitable
constraints to relate a component of a plan to other components.

CONCEIVER's plan editor provides another mechanism to help a
knowledge engineer to acquire plans. Instead of writing a plan in the plan
language, a knowledge engineer writes a plan as program code, The
CONCEIVER’s Automatic Acquisition of Plans mechanism will then convert
the program code into plans. The availability of this mechanism helps reduce
the time that is needed to construct a plan.

84

The process of acquiring a plan from source code starts by obtaining the
recognition hierarchy of the code. After that, a special tool called the Plan
Language Synthesizer constructs the plan from the recognition hierarchy. To
ensure the correctness of the plan, the constructed plan will then be presented
to the knowledge engineer to be finalized before it is stored in the plan base.
The knowledge engineer can edit the plan by using the plan preparation tool.

Since a plan consists of three parts, the generation of a plan by the Plan
Language Synthesizer is done in three stages. The first stage is to synthesize
the data structure part by obtaining the data types for each of the variables
in the program. The second stage is to synthesize the components part. The
final stage is to obtain the plan’s constraint part by finding all possible
constraints for the components of the plan.

USER INTERFACE

CONCEIVER'S user interface was implemented as a Multiple Document
Interface (MDI) as shown in Figure 8. The user can select the command by
using the pull-down menu. However, to make it easier for users of the
system, commonly used commands are provided by using buttons. Some of
the buttons are described in this section.

¥\ Concerves - [1 pa3]

'rogran E#tlpl Clnpu.autpm! i
Var

Tl P00 o
Total : I-uqu- ;

I Inceyer i

K : Inceger |

8:;::-’- : n.a ;B o
1 000000 g 4

The e gt bmer RS pene b Tae ez uges & atermeanate ranahis
¢ bo swap e two Tanables puc A ennre

T de atkee § s Trde g s the venazle @

The cade at e 9 Thes Code e it & to the vanasle § 8

Tarcrde alne JOThy Tivie Czaw e viculboe 02 Die vanable 4

FIGURE 8. The main window of CONCEIVER

85

Each edited program has two editors, one for original program (labelled
1) and the second for the transformed program (not shown in Figure 6).
These two editors are overlapped. The user can switch from the original
program to the transformed program by clicking button labelled 13. The
document viewer (labelled 2) is used to display the generated documentation
about the program. The area that is labelled 3 shows the hierarchy viewer that
enable users to view the hierarchy of the recognized plans.

Buttons 4, 5, and 6 are used to create a new file, open an existing file
and save a file, respectively. Button 7 activates the translator. Since
transformation is not compulsory, no special button is allocated for it. The
user can invoke the transformer by choosing the option Invoke Transformer
for the Understand menu.

Button 8 activates the understanding inference. This inference starts at
the leaves of the parse tree of each flow graph node.

Some of the buttons are provided for the knowledge engineer to input
plans into the plan base. The plan editor, basic plan editor, data structure
editor and the implementation viewer can be activated by clicking buttons 14,
15, 16 and 17 respectively. Button 18 activates the plan automatic acquisition
system.

Three status panels are shown at the bottom of the main window
(labelled 22,23,24). These panels are used to display the cursor position, the
file statues and compilation errors.

CONCLUSIONS

The main aim of CONCEIVER is to be a “‘usable” program understanding
system. We have identified that such a system must possess the following
characteristics: providing support for recognition of program code, providing
support for entering new plans into the plan base, ability to identify program
code that may occur in many different forms and ability to recognize code
regardless of the programming language used for implementation.

In this paper. we have described the design and implementation of
CONCEIVER and have given the justification to support the claim that
CONCIEVER does possess the listed characteristics and thus may be considered
to be a “usable” program understanding system.

Apart from its recognizing capabilities, another important contribution of
CONCEIVER is the plan editor, which allows a knowledge engineer to acquire
and organize plans in the plan base. The availability of the automatic plan
recognition tool is very important to enable CONCEIVER to be used to
recognize programs based on different specifications. This tool allows a user
to add plans to the knowledge base simply by giving the programs, and thus
makes it very easy for him/her to add plans to suit different specifications
being tested.

86

A few experiments of using CONCEIVER to recognize real programs
have been conducted with promising results (Abdullah et al 2003). However,
further work is currently being undertaken to enhance the capability of
CONCEIVER and to correct some errors that are still present in the system.

REFERENCES

Aho, A. V., Sethi, R. & Ullman, J. D. 1986. Compilers principles, techniques, and
tools. USA: Addison- Wesley .

Curtis, B., Fonnan, L., Brooks, R., Soloway, E. & Ehrlich, K. 1984. Psychological
perspectives for software science. Information processing and management,
20:81-96.

Halested, M. E. 1977. Elements of software science. New Yark: Elsevier .

Harandi, M. T. & Ning, J. Q. 1990. Knowledge based program analysis. Sofrware
7(1):74-81.

Johnson, W. L. & Soloway, E. 1985. PROUST: knowledge based program
understanding. [EEE transactions on sofrware engineering 11(3).

Kozaczynski, W.. Liongosari, E. S. & Ning, J. Q. 1991. BAL/SRW: Assembler
re- engineering workbench. Informarion and sofrware rechnology, 33(9): 675-
684,

Kozaczynski, W., Ning, J. & Engberts, A. 1992. Program concept recognition and
transfonnation, /EEE rransactions on sofrware engineering, 18(12).

McCall, J. P. Richards and G, Walters, 1977. Factors in Software Quality
(3 Volumes). NTIS AD-A049-015,015,055.

Rich, C. 198]. A formal representation for plans in the Programmer's Apprentice.
Proc. Of The tth International Joint Conference On Artificial Intelligence: 1044-
1052.

Ruth. G. R. 1974, Analysis of algorithm implementations. Technical Report #130,
MIT, Project Mac, MA.

Wills. L. M. 1987. Automated program recognition. Technical Report #904, MIT,
Antificial Intelligence lab.

Abdullah Mohd Zin. Hani Mohd Ahmad al-Omari and Syed Ahmad al-Junid. 2003.
An Experiment of Using a Program Understanding System In Learning
Environment. Technical Report, Computer Science Dept, Universiti Kebangsaan
Malaysia.

MAKLUMAT PENGARANG

Abdullah Mohd Zin & Hani Ahmad Al-Omari
Programming Research Group

Faculty of Information Science and Technology
Universiti Kebangsaan Malaysia

43600 Bangi, Selangor, Malaysia

amz @ ftsm.ukm.my

87

