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ABSTrAK

This paper presents a solution for behavioural animation of autonomous virtual agent navigation in virtual 
environments. We focus on using Dempster-Shafer’s Theory of Evidence in developing visual sensor for 
virtual agent. The role of the visual sensor is to capture the information about the virtual environment or 
to identify which part of an obstacle can be seen from the position of the virtual agent. This information 
is required for virtual agent to coordinate navigation in virtual environment. The virtual agent uses fuzzy 
controller as a navigation system and fuzzy alpha-level for the action selection method. The testing was 
divided into two parts namely navigating in complex environment using different degrees of uncertainty and 
measuring the effectiveness of proposed action selection method to coordinate the behaviours by comparing 
with Fuzzy Behaviour Fusion (FBF) method. The aim of the testing was to evaluate the performance in terms 
of robustness and quality of path generated by the virtual agent. The result clearly demonstrates that the 
path produced is reasonably smooth even though there is some sharp turn and not diverted too far from the 
potential shortest path. This indicates the strength of our method, where more reliable and accurate paths 
produced during navigation task.
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ABSTrAK

Artikel ini menerangkan satu penyelesaian untuk animasi tingkah laku dalam pengemudian perlakuan animasi 
agen maya secara autonomi dalam persekitaran maya. Kami memfokus kepada penggunaan teori pembuktian 
Dempter-Shafer’s dalam membangunkan pengesan maya untuk agen maya. Fungsi pengesan visual adalah 
untuk mendapatkan maklumat tentang persekitaran visual atau, untuk mengenal pasti bahagian mana halangan 
boleh dilihat daripada kedudukan agen visual tersebut. Maklumat ini diperlukan untuk mengkoordinasikan 
pengemudian agen maya dalam persekitaran maya. Agen maya menggunakan kawalan kabur sebagai sistem 
pengemudian dan aras alfa kabur sebagai teknik pemilihan tindakan seterusnya (membuat keputusan). Pengujian 
telah dibahagikan kepada dua bahagian iaitu pengemudian di persekitaran kompleks menggunakan darjah 
kekaburan yang berbeza dan pengujian kedua ialah untuk mengukur keberkesanan teknik membuat keputusan 
untuk memilih tindakan seterusnya dalam mengkoordinasi perlakuan pengemudian serta membandingkan 
dengan kaedah Gabungan Tingkah laku Kaburn. Tujuan pengujian adalah untuk menilai prestasi berdasarkan 
keteguhan and kualiti lintasan yang dijana oleh agen maya. Keputusan pengujian telah menunjukkan lintasan 
yang dijana boleh dikatakan lancar walaupun terdapat sedikit lencongan tajam, namun masih tidak tersasar 
jauh dari potensi lintasan terpendek. Ini menunjukkan kekuatan kaedah yang digunakan yang mana telah 
menjana lintasan yang lebih boleh dipercayai dan tepat semasa pengemudian.

Kata kunci: Agen, Pengemudian, Dempster Shafer, Fuzzy Logic.
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iNTrODUcTiON

Navigation is the process where people control their movement using environment cues and artificial aids 
such as maps so that they can achieve their goal without getting lost (Darken and Sibert 1993). Autonomous 
virtual agent navigation in a virtual environment can be described as the ability of a virtual agent to move 
purposefully without user intervention. The navigation task may be decomposed into three sub-tasks: mapping 
and modelling the environment; path planning and selection; path following and collision avoidance (Wan 
and Tang 2003). Virtual agent navigation can occur in known and unknown environments. For a known 
environment, the virtual agent will have knowledge about the environment and can generate the navigation 
path. The methods used are based on optimization and computational intelligence. in contrast, in an unknown 
environment in which the virtual agent does not have any knowledge about the environment, the navigation 
path is generated according to user specifications and the virtual agent cannot be prepared ahead of time (Li 
and Lie et al. 1999).

BAcKgrOUND

The basic problem of navigation is moving from one place to another by the coordination of planning, sensing 
and control. The challenge is generating an optimal traversing sequence through the user-specified locations 
of interests and computation of a collision free path. (Li and Lien et al. 1999) had shown an example of 
a path traversing through all user-specified locations. In order to navigate in an unknown environment, a 
virtual agent needs to deal with the environment in a timely manner.
 Approaches such as discrete grid based (Bandi and Thalmann 2000), central path computation (chaudhuri, 
Khandekar, et al. 2004) and roadmap with tactical information approaches (rook and Kamphuis 2005) have 
been used for collisions free path planning. For example (Stilman and Kuffner 2004) studied navigation 
among static and movable obstacles. The planner takes advantage of the navigational structure through 
state-space decomposition and a heuristic search. The planning complexity is reduced to the difficulty of 
the specific navigation task, rather than the dimensionality of the multi-object domain.
 inspired by studies in human behaviour, Lamarche and Donikian (2004) proposed a general model to 
simulate the navigation process inside indoor and outdoor environments. Techniques such as set hierarchy, 
regular graph, artificial potential field and corner graph have been used but are only suitable for 2D 
environments. One of the reasons is those algorithm require high computational resource in 3D environments. 
For a 3D environment, navigation mesh and waypoint graph techniques are very popular. A navigation mesh 
technique is a representation that covers the walkable surface of the world with convex polygons (Tozour 
2003). Waypoint is a set of points in the 3D environment with reachability links between them, where we 
can place a waypoint at any point in 3D space. The disadvantages of these two techniques are large memory 
usage, and they require a powerful processor. Even though some of these techniques have been used in 
computer games, it is still not clear that these approaches have been used in autonomous navigation in virtual 
environments (Salomon and garber et al. 2003).
 Artificial intelligence techniques, for example neural networks (Lozano & Molina 2002), genetic 
algorithms (Velagic, Lacevic et al. 2006) and reinforcement learning (Ho-Sub, So-Joeng et al. 2000) have been 
used. Wang (2002) presented a multi-agent based evolutionary artificial neural network (ANN) for general 
navigation. The virtual creature explores unknown environments as far as possible with obstacle avoidance. 
Through constant interaction with the environment, the virtual agent systems co-decide and consult with 
each other for the move decision. Lozano and Molina (2002) have integrated attention and navigation skills 
in a 3D virtual agent. They divided their neural model into two main phases. First of all, the environment 
categorization phase, online pattern recognition and categorization of the virtual agent current input sensor 
data is carried out by an adaptive resonance driven self organizing neural network. Then, the model must learn 
how and when to map the current short term memory state into navigation and the attention of the virtual 



3

agent. However the majority of 3D virtual agents focus on low cost global techniques to solve navigation 
problems and attention is less frequently considered in virtual worlds.
 The reactive virtual agent (Piaggio, Sgorbissa, et al. 1997) is capable of carrying out autonomous 
navigation. The virtual agent extends the artificial potential field approach, used for trajectory formation, to 
environment exploration and symbolic feature detection. The virtual agent’s capabilities range from obstacle 
avoidance to maze navigation, carried out autonomously or under the supervision of higher cognitive levels. 
Other methods by Salomon et al. (2003) have been used in a known environment. On the other hand, in an 
unknown environment, methods such as sensor based control in a study by Wan and Tang (2003) use Adaptive 
Dynamic Points of Visibility (ADPV) for moving virtual agents in dynamical unconfigured environments.

ArcHiTEcTUrE

The navigation system can be divided into three main components, namely are the fuzzy navigator, virtual 
agent and the environment, as in Figure 1. The main component of the navigation system is the virtual agent 
itself. The virtual agent should be able to make its own decisions; it does not require any information about 
the virtual environment; and does not require any training or learning before the navigation task. 

FigUrE 1. Navigation system

The fuzzy navigator is the main engine for the virtual agent. it comprises of three main components: 

• Fuzzy Logic Controller (FLC) - using a behaviour-based architecture which comprises of Path-Planning 
Behaviour (PP), goal-Seeking Behaviour (gS) and Obstacle-Avoidance Behaviour (OA). 

• Local Minima Solver (LMS) - responsible for helping the virtual agent escape from dead-ends. 
• Fuzzy Action Selection (Decision Making) Mechanism (Fuzzy-ASM) - to make the final decision in • 

selecting the possible action required by the virtual agent to reach the goal. 

 The fuzzy navigator receives input from the visual sensor and produces the final action needed 
to be executed by the virtual agent. Each component in the fuzzy navigator is integrated and works 
independently.

A. Visual Sensor
The main information between environment and virtual agent is retrieved using a visual sensor. This visual 
sensor differs from vision systems in robotics, since all information about pattern recognition and noisy images 
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can be ignored (Kuffner 1999). The visual sensor captures the information about the virtual environment or 
identifies which part of an obstacle can be seen from the position of the virtual agent as in Figure 2. Also, 
the visual sensor only identifies whether a square (cell) in the vision range is occupied by an obstacle or not. 
The assumption made is that all objects are opaque.

FigUrE 2. Example of Vision Field and Sensor’s region 
based on location

 The visual sensor field of the vision range is 180° . The vision field is divided into eight main sectors which 
are represented as  S0, S1, S2, S3, S4, S5, S6 and S7. Hence, there is a probability that the cells located in the 
proximity may be occupied. Cells well inside the vision field sector are likely to be empty. An occupancy 
grid is essentially a data structure that indicates the certainty that a specific part of space is occupied by 
an obstacle. it is a representation of an environment as a two-dimensional array. Each element of the array 
corresponds to a specific square on the surface of the actual world, and its value shows the certainty that 
there is some obstacle there.
 The visual sensor in Wang and McKenzie (1999) has been modified by using Dempster-Shafer 
evidence theory (Shafer 1976). Whenever the virtual agent moves, it catches new information about the 
environment and updates the map. To facilitate building an occupancy map (Velagic, Lacevic et al. 2006) 
of the environment, a grid representing the whole space needs to be constructed. Every discrete region 
of the map (each cell) may be in two states, Empty is E and Full is F. Then, a frame of discernment, κ, 
is defined by the set κ = [E, F ],  where E and F represent the possibility that a cell is Empty or Full. The 
advantage of this technique is that the building of occupancy maps is well suited to path planning and 
obstacle avoidance (Young-chul, Sung-Bae et al.).

Review of Young-Chul, Sung-Bae, et al. (2002) Use of Dempster-Shafer’s Theory of Evidence
A basic probability assignment is a function  m: κ = [0,1]  where g is a set of all subsets of κ. in our case, g 
= 2κ = {ø,{E}, {F}, {E, F}}. The state of each cell is described by assigning a basic probability number to 
each label g. For each cell  (i, f ) in the grid, it is required that: 
                
 mi, j(ø) = 0  ( 1 )
 
  ( 2 )

Every cell in the environment is initialized as follows: 
               
 mi,j {E} = mi,j{F} = 0  ( 3 )
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 mi,j = {E, F} = 1  ( 4 )

 Then, the virtual agent moves and scans the environment. if n cells exist in the vision field sector, the 
basic probability assignment for the vision field sector is as follows: 

  ( 5 )

  ( 6 )

 By adding subscripts S and M to basic probability masses m, we can describe the basic probability 
assignment of the sensor as equations (8) and (9): 

  ( 7 )

  ( 8 )
 
  ( 9 )

 However, the number of states can be reduced to two (mi,j(E), mi,j(F)) assuming that  mi,j(ø) = 0 and 
applying equation (2). The state (0,0) means total ignorance, and so mi,j(E,F) = 1. When the virtual 
agent is sure about cell occupancy, mi,j(F) = 1, the other labels are made equal to zero. On the other 
hand, mi,j(E) = 1 when the virtual agent is sure that the cell is empty.
 The input value θ of the virtual agent, which is a real number normalized in the interval [0,1], then results 
from a weighted sum of all the points in the visual field.

   ( 10 )

summed over all d(x) in visual field where  is the distance of a point x from the current position of the virtual 
agent, and u(x) indicates the availability of the point x. Since the visual sensor is related to availability of spaces 
in the visual field, it is independent of specific environments and objects. The result is that the occupancy of 
cells is increased. This process will be carried out until the virtual agent reaches the goal.

B. Fuzzy Controller
A Fuzzy Associative Memory (FAM) is used as a process of encoding and mapping the input fuzzy sets 
to the output fuzzy set (Kosko 1992). The fuzzy controller is based on our proposed method (Jaafar and 
McKenzie 2006 2007). consider a set of fuzzy rules, R = {R1, R2, …, Ri, …, Rk) where Rm is the mth rule of 
the fuzzy controller. The rule Rm is given as follows:
                
  ( 11 )

The following fuzzy relation will implement Ri:

  (12 )
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 Where X1, X2, …, Xn are input variables which are the sensor data of the virtual agent,  are 
the input fuzzy sets,  is the output fuzzy set, Z is the output variable, n is the dimension of the input vector 
and m is the number of fuzzy sets.
 The weighted sum C for each individual membership can be defined by using minmax aggregation (ross 
2004) operators as given below:

  ( 13 )

 The non-negative weight Ui summaries the strength of the mth FAM entry and n × m is the number of 
rules in the system. in order to relate the nth fuzzy set of the mth fuzzy rule, the fuzzy implication model using 
the Mamdani min operator (L.-X. Wang 1997) interprets the logical rules for rule firing. We obtain the final 
defuzzification response for a κ output membership function Uc(Z) is defined as:

  ( 14 )

Equations (12) and (14) are used to derive the FAM model and the output fuzzy system respectively. 

C. Action Selection Method
This work is inspired by the ranking method of Huang (1989), Mabuchi (1988) and Yuan (1991) and uses 
α-level and fuzzy subtraction operations to calculate the area of a new fuzzy number, which is produced by 
the comparison of two fuzzy numbers. if there are m fuzzy numbers, then m(m–1)/2  pairs of fuzzy numbers 
must be compared to determine overall rank. Our proposed method will reduce the redundancy of calculating 
m(m–1)/2 pairwise comparisons to m pairwise comparisons by the fuzzy subtraction operation.
 in general, when comparing m different fuzzy numbers produced by each behaviour (OA, gS, PP) the 
height and common maximizing and minimizing barriers are used. Let  be the membership function 
of a fuzzy number, (behaviour output), defined on R. Unlike convexity, n assumptions about the normality 
of  are made. 
 Based on (choobineh and Li 1993), the loci of the left or right spreads and the maximum and minimum 
barriers of the α-cut of the fuzzy number, , are  and respectively, where  is the 
height. if  is denumerable or connected, then:

  (15 )

 The height, maximizing and minimizing barriers are set to:
               

  (16 )

 Based on Huang (1989) and equation (16), that is,  is the maximum value of the height of all m 
fuzzy numbers. 
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 The variables c and d are at the minimum value of the left spread and the minimum right spread of all 
fuzzy numbers, respectively. To simplify the fuzzy subtraction between the fuzzy number  and referential 
rectangle at ai level, interval subtraction is used:

   (17)

then, the behaviour weight, W of equation (17) becomes:  
             

  (18)

where n is the number of the a – level and as n approaches to ∞, the summation becomes the area measurement. 
In equation (18), is a positive value and  is a negative value. Here, the denominator represents 
the total area as n approaches ∞. in addition, if all of the aggregated fuzzy numbers are normal and within 
the unit interval, then c = 0, d = 1, and equation (18) becomes:
 in our case, the behaviour weight value W from equation (14) was used. For every W, we used the minimax 
(maximin) criterion, which selects the lowest value from each behaviour as d1; and then selects the highest 
value from each behaviour as d2. The index of optimism (chen and Yu 1997), s, was used to represent the 
level of uncertainty of the virtual environment. When selecting one particular action from a range of possible 
actions, the selection was based on the Hurwicz criterion (Arnold, grossl et al. 2002) which is defined as:

 
           ( 20 )

FigUrE 3. Trapezoidal fuzzy number
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 Based on the above discussion the following algorithm was used. Let 1, 2,…, j, …, m be m arbitrary 
bounded fuzzy numbers produced by each behaviour.
Step 1: Set the height hg(x), common maximizing barrier d and minimizing barrier c for referential rectangle

Step 2: Determine the subtracted interval numbers [li – d, ri – c], i = 0,1,2,…,n by calculating the n 
a – level s for each fuzzy number j< – > , j = 0,1,2,…,m.

Step 3: Determine the behaviour weight, W for each j, by equation (19).
Step 4: repeat Steps 2 and 3, for every j, j = 0,1,2,…,m and the m behaviour weights for m fuzzy numbers 

are obtained.
Step 5: For every W, use the minimax (maximin) criterion, which selects the lowest value from each 

behaviour as d1 and selects the highest value from each behaviour as d2.
Step 6: Determine the index of optimism s. The final action is selected based on the Hurwicz criterion 

using equation (20).

rESULTS

Experiments were also conducted to observe the effect of using different degrees of optimism, sigma, by the 
virtual agent to navigate in complex environments. Figure 4 shows the result of the experiment conducted in 
a cluttered environment using different degrees of optimism, s, which are (a), s = 0.9 and (b) s = 0.4. The 
environments contain different sizes of obstacle and narrow passages. The virtual agent in Figure 4(a) has 
produced a shorter path compared to the virtual agent in Figure 4(b). However the number of steps is higher 
compared to Figure 4(b). The main reason is that the virtual agent is required to go through a narrow passage 
in order to produce the shortest path. in Figure 4(b), the virtual agent has made a sharp turn and high number 
of time steps at this point. As a result the virtual agent take a big turn to the wider passage before turning 
and reaching the goal. Time steps at the rest of the path are consistent since there is no complex obstacle to 
avoid. The results show that the decision process by the virtual agent is affected by the degree of optimism. 
Using a higher value of \sigma makes the virtual agent enter the narrow passage compare to a low value 
of \sigma which makes the agent prefer to select the wider passage. However the number of decisions and 
steps might vary depending on the complexity of the environment.

FigUrE 4. Different Degrees of Optimism (a) = 0.9 and (b) = 0.4

 Further experiments with complex environments have been conducted. The environments contain a 
combination of maze and cluttered obstacles and three random goals have been selected. The degree of 
optimism, s = 0.5, was used for the first trial. Unfortunately this value did not give a very promising result 
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as in Figure 5. The virtual agent had successfully reached the goal, but paths produced are long with many 
sharp turns and a high number of time steps.
 Based on result in Figure 4, using a higher value of s  will give a better result. A new value of s = 0.8 
has been selected. Figure 6(a) and (c) produce smooth and short paths compared to the results in Figure 5(a) 
and (c). in Figure 6(b), the virtual agent follows a similar path compared to Figure Figure 5(b) but with a 
small number of sharp turns. From the figures, we also notice that the virtual agent does not take the narrow 
path at X. One probable is that the passage is too narrow and might require a higher value of s. However 
having a higher value of s, the virtual agent might follow a longer and unsafe path.
 Also in Figure 5(b) and Figure 6(b), notice that the virtual agent does not produce the shortest path. 
The virtual agent moves forward to the goal even though there are a walls and a dead-end. Then the virtual 
agent makes a left turn to escape from dead-end and follow the wall toward the goal. The virtual agent 
tried to reach the goal by moving straight ahead towards the goal by having a high value for goal-Seeking 
behaviour. The virtual agent starts to switch to Path-Planning behaviour and Obstacle-Avoidance behaviour 
when it encounters an obstacle and needs to make a turn to reach the goal. This shows that the virtual agent 
has imitated how a human might make decisions during a navigation task in an unknown environment by 
making a good assumption that the path to the goal is ahead of them even though they cannot see the goal.

FigUrE 5. Navigating in combination of cluttered 
and maze environment (0.5)

FigUrE 6. Navigating in combination of cluttered 
and maze environment (σ = 0.8)

 Four test cases have been used which are the virtual agent being moved from the same start point to 
different target points as in Figure 7 to Figure 10 (Test case 1, 2, 3 and 4). Figure 10 shows the example of 
the path produced by the virtual agent in Test case 4.
 Figure 10(a) is the path produced by cang’s Method and Figure 10(b) shows the path produced by 
our Fuzzy-ASM. The path produced by the Fuzzy-ASM is shorter than cang’s method even though the 
smoothness of the path is similar.
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 Further testing has also been conducted with nine different goal locations. Figure 11 shows the result 
of (a) Time (tn), (b) Distance (dt) and (c) Decisions (k) taken by the virtual agent for all nine goal locations. 
The results show that Fuzzy-ASM has taken less time and a shorter distance to complete the task. The 
average percentages of Δtn and Δdt are 16% and 17.4%, respectively. When we compare the number of 
decisions made by each method, Fuzzy-ASM has made fewer decisions. The average number of decisions 
is 8.04% less than Wang’s method. Fewer decisions leads to a faster and more reliable decision making 
process.
 Our tests also show that the success rate for the Fuzzy-ASM is higher than Wang’s method, as shown 
in Figure 12. Success rate refers to the percentage of test runs (total of 25 runs) for each test where the 
virtual agent successfully reached the goal. in test 1 to test 4, the fuzzy ASM had a 100% success rate. 
Wang’s method starts to decrease at test 2. The lowest success rate is 90% compared to Wang’s method 
at 70%. This suggests that the Fuzzy-ASM is more reliable.

FIGURE 8: Test Case 2

FIGURE 9: Test Case 3 FIGURE 10: Test Case 4

FigUrE 7. Test case 1 FigUrE 8. Test Case 2

FigUrE 9. Test case 3 FigUrE 10. Test case 4
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FigUrE 11. (a) Time, (b) Distance and (c) Decisions

FigUrE 12. Test Success rate
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cONcLUSiON

Our visual sensor had shown how information is captured in virtual environment and how it identifies which 
part of an obstacle can be seen from the position of the virtual agent. Also, the visual sensor only identifies 
whether a square (cell) in the vision range is occupied by an obstacle or not. This information is critical for 
virtual agent in coordinating its navigation task. The visual sensor is also easy to integrate with our fuzzy 
controller. The evaluation results showed that the virtual agent had deviated with minimum distance when 
avoiding the obstacles. The results also clearly demonstrated the mapping of inputs to output with a smooth 
path in a navigation task. This presents a natural way of dealing with a virtual environment without having 
to use complex mathematical model.
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