A Comparative Study of Apriori and Rough Classifier for Data Mining

MOHAMAD FARHAN MOHAMAD MOHSIN, AZURALIZA ABU BAKAR & MOHD HELMY ABD WAHAB

ABSTRACT
This paper presents a comparative study of two data mining techniques; apriori A_c and rough classifier R_c. Apriori is a technique for mining association rules while rough set is one of the leading data mining techniques for classification. For the classification purpose, the apriori algorithm was modified in order to play its role as a classifier. The new apriori called A_c is obtained through the modification of the frequent item set generation function and a filtering function is proposed. The purpose of this modification is to consider the apriori as a target-oriented training where target class is included during mining. Frequent item set generation phase is carried out to mine all attributes together with target class. The performance of A_c is compared with a rough classifier. Rough classifier R_c is chosen for comparison for its rule based structure. Three important measures will be used for both techniques, the accuracy of classification, the number of rules, and the length of rules. The experimental result shows that A_c is comparable with R_c in terms of accuracy and in several experiments it performs better. A_c produced more rules than R_c. This study indicates that apriori can be used as an alternative classifier.

Keywords: Rough set, apriori algorithm, rule based classifier.

ABSTRAK
Kertas ini membentangkan kajian perbandingan di antara dua teknik perlombongan data; pengelas apriori A_c dan pengelas kasar R_c. Apriori merupakan teknik untuk melombong petua sekutuan manakala set kasar adalah satu dari teknik pengelasan yang terkemuka. Untuk tujuan pengelasan, algoritma apriori telah diubahsuai untuk ia memainkan peranan sebagai pengelas. Apriori yang baru dipanggil A_c diperoleh melalui pengubahsuai fungsi penjanaan item kerap dan satu fungsi penapisan dicadangkan. Tujuan pengubahsuai ini ialah untuk mempertimbangka apriori sebagai set latihan berorientasikan sasaran iaitu kelas kasaran digunakan semasa
Association rule (AR) is a data mining technique to find interesting relationship and construct rule within frequent attributes in database (Han and Kamber, 2001). Agrawal et al. (1993) originates the research in AR by introducing apriori algorithm as first algorithm to analyze market basket problem. They had attracted researchers over the world to explore it and in recent times, the study on apriori algorithm focuses on increasing its performance speed, searching, reducing total frequent item sets and rules generated using constraint technique, and allow user to set criteria before mining (Anis Suhailis, 2005; Park et al., 2005). Beside apriori, other AR algorithms are Fp-growth and ARSC (Han et al., 2000; Brian et al., 1997).

Recent studies indicate that apriori algorithm had been widely used to perform classification. The experimental result demonstrated by Liu et al. (1998) confirmed that AR can be used as classifier. They modified the first apriori algorithm to play a role as classifier by suggesting Classification Based on Association (CBA) algorithm. As classifier, CBA applies separate-and-conquer approach by building up the interesting rules in greedy fashion. The set of interesting rules were generated based on minimum and confidence support threshold. As a sequence, CBA was modified to improve its efficiency, such as increasing the mining speed, better rules arrangement method, and lower rule quality (Liu et al., 2000; Davy et al., 2005). Beside CBA, Multi Class Association Rule (MCAR) and Apriori-C are also two associative classification algorithms that utilized apriori based concept (Thabtah et al. 2004; Jovanoski & Lavrac, 2001). Both algorithms provide better classification accuracy compared to CBA. Other associative classification algorithms are CMAR, CSFP, and GAIN are algorithms which provide better classification accuracy however those methods do not employ support and confidence criteria in apriori approach. As a result, they can reduce the mining time and increased the classification accuracy (Li et al., 2001; Yudho & Raj, 2004; Chen et al., 2005).
In most research, the performances of classification algorithms based on AR are compared within the associative classification algorithms classes which are based on AR technique or traditional classification algorithm. The comparative study should also be carried out with other leading classifiers that have similar structure of knowledge such as rough classifier and decision tree, C4.5 (Liu et al., 2000; Thabtah et al., 2004; Davy et al., 2005; Li et al., 2001). Theoretically, two classification techniques will generate different sets of rules via knowledge even though they are implemented to the same classification problem and perform well in classification with comparable accuracy. This is supported by Geng & Hamilton (2006) whereby different rule sets can be found when various classification algorithms are tested on the same dataset. According to Ma et al. (2000), each rule may give different knowledge and some of the rules produce consistent information. The results from different classification system can be used to determine appropriate technique for particular domain. Previously, Zorman et al. (2002) compared the result between AR and decision tree in terms of rule quantity after filtering and reduction. The experiments showed that the decision tree produced smaller rule than AR. Besides that, Mohsin and Abdul Wahab (2008) evaluated rough classifier and decision tree classification technique towards several UCI dataset. They indicated that rough classifier is able to generate consistent accuracy, shorter rule and higher coverage. However, the quantity of rule produced by decision tree is much lower than rough classifier.

According to Bakar (2002), the performance of a classification system cannot be based only on higher accuracy, but also the quality of knowledge such as minimum number of rules, rule length, and rule strength that also needs to be assessed. A good rule set must have a minimum number of rules and each rule should be as short as possible. Moreover, an ideal model should be able to produce fewer rule with shorter rule and classify new data with good accuracy. Therefore, the quality of knowledge will determine the classifier to classify new cases with good accuracy.

In this study, the performance of a modified AR classifier will be compared with rough classifier. The rough classifier is chosen as classification technique due to comparable structure of knowledge generated with the AR classifier. The purpose of this study is to investigate the accuracy and the quality of rule in terms of size of rules in both approaches. The rules will be thoroughly investigated for its responds to the positive and negative class, and the maximum and the minimum length.

This paper is organized as follows. Section 2 outlines the basic notion of AR and the associative classification. The proposed new algorithm for A_r is discussed in section 3. The experiment and result will be presented in section 4 and the final section concludes this work.
BASIC NOTIONS

In this section, the basic of association rule mining and rough classification modeling is discussed. Association rule mining or AR mining is the identification of frequent items that occur in a database of transaction. Each item \(i_j \) in a transaction is an important feature that contributed to the computation of item set and generation of rules. Basically, let \(I = \{ i_1, i_2, \ldots, i_m \} \) be a set of item and \(D \) be a set of transactions, where each transaction \(T \) is a set of items such as that \(T \subseteq I \). An AR is an implication of form \(X \rightarrow Y \), where \(X \subseteq I, Y \subseteq I \), and \(X \cap Y = \emptyset \). The rule \(X \rightarrow Y \) has support \(s \) in the transaction \(D \) if \(s\% \) of transactions in \(D \) contain \(X \cup Y \). The rule \(X \rightarrow Y \) holds in the transaction with confidence \(c \) if \(c\% \) of transaction in \(D \) that contain \(X \) also contain \(Y \). AR mining’s processes begin with searching for frequent item set with user-specified minimum support and later rules are contrasted by binding the frequent item with its values and class. Strong rules are defined as rules that have confidence more than the minimum confidence threshold.

Suppose a training dataset \(D \) of a set of instances \(I = \{ i_1, i_2, \ldots, i_m \} \) follows the schema \((A_1, A_2, \ldots, A_n) \), where \(A \) is an attribute of type categorical or continuous. For a continuous value, we assume that its value range is discretised into intervals, and the interval is mapped to a set of consecutive positive integers. By doing so, all the attributes are treated similar to an item in a market basket database. Let \(C = \{ c_1, c_2, \ldots, c_m \} \) be a set of class labels. Each data object in \(D \) has a class label \(c \in A \) associated with it. A classifier is a function from \((A_1, A_2, \ldots, A_n) \) to \(C \). Given a pattern \(P = [p_1, p_2, \ldots, p_n] \), a transaction \(T \) in \(D \) \((T \subseteq I)\) is said to match a pattern \(P \) if and only if for \((1 \leq j \leq k)\), the value of each \(i_j \) in \(T \) match with \(p_j \). If a pattern \(P \) is frequent in class \(C \) then the number of occurrences of \(P \) in \(C \) is satisfy support (\(R \)) of the rule \(R: P \rightarrow C \). The ratio of the number objects matching pattern \(P \) and having class label \(c \) versus the total number objects matching pattern \(P \) is called the confidence of \(R \), confidence (\(R \)).

Rough classifier was inspired by the concepts of the rough set theory defined by Pawlak (1993) in the early 1980’s is a framework for discovering relationship in imprecise data. Rough classifier was developed by Lenarcik & Piasta (1994) are similar in concepts to the feature subsets of Kohavi & Frasca (1994). The primary goal of the approach is to derive rules from data represented in an information system. The results from training set usually a set of propositional rules that may have syntactic and semantic simplicity for a human. The rough set approach consists of several steps leading towards the final goal of generating rules from the information or decision systems. The first step involves mapping of information from the original database into the decision system format. In rough classification modeling, the data are required to be discretised. Consequently the data preprocessing is one of the
important and tedious task to be performed. The next step will be the computation of reducts from data. Reducts are set of important attributes found within the information system that can be considered more important than other attributes. Reduct computation involve complex process and in addition there are several techniques to compute reducts such as genetic algorithm, Johnson reducer, and dynamic reducts. The knowledge in rough set is obtained through rules generation from reducts. Rules are constructed by binding together the attributes and its values in particular classes. These rules play important roles as a classifier and will be used to classify new unseen data or cases. Detail theory and concept on rough classification technique can be found in Pawlak et al. (1993).

MODIFIED APRIORI CLASSIFIER (A_c)

A_c is based on apriori algorithm (Agrawal & Srikant, 1994). Basically, apriori contains two phases; frequent item set generation and rule generation. The new apriori classifier involves the modification in frequent item set generation and new filtering function was added during the rule generation phase. The purpose of this modification is to treat apriori as a target-oriented training where target class is included during mining.

Frequent item set generation phase is set to mine all attributes together with target class. A_c consider the last attribute as target class and during mining, all candidates and frequent item sets are kept in tables where the last item of the column is a target class. Let say D is a training dataset with target class $Z = \{c_1, c_2, ..., c_n\}$, collection of attributes $A = \{A_1, A_2, ..., A_n\}$ with the value of each attribute $A_i = \{av_{nx}, av_{n2}, ..., av_{nx}\}$. A_c will generate a list of candidates where the last set of the list is target class value, $C_k = \{av_{nx}, bv_{nx}, cv_{nx}, dnx, ..., cn\}$. Similar to apriori, all candidates in C_k must pass the minimum support threshold before it can be regarded as a frequent item set.

To minimize mining time, all attribute’s value are transformed to a unique format which sorted ascending before mining process. For example attribute sex which contain value ‘male’ and ‘female’ and attribute race which valued as ‘Malay’, ‘Chinese’, and ‘Indian’ are transformed to the value of $D01$ (male), $D02$ (female), $D03$ (Malay), $D04$ (Chinese), and $D05$ (Indian). The formalization of unique attribute value’s name format as well as the allocation of last item in candidate list C_i particularly for decision class makes A_c modeling different with others associative classification based on apriori. Algorithm 1 is a modified frequent item set generation where the function to scan target class before mining is inserted at line 2. The output of first phase is frequent item set.
Algorithm 2 indicates the rule generation phase of modified A_c. During this phase, a new filtering function is added in this algorithm. This function will examine the last item of frequent item set and identify the target class (line 3). If the last item is the target class, A_c will eliminate the frequent item set while generating rules for those items with a target class. Consider the

ALGORITHM 1. Modification on frequent item set generation phase

ALGORITHM 2. Rule generation phase of A_c
frequent item set, \(L_k = \{a_{v1}, a_{v2}, ..., a_{vn}\} \). If the last item of \(L_k \in Z \), then it will be removed from the system. If pass, rule will be generated if and only if the confidence of the rule is higher than threshold. Beside that, filtering function will also identify the redundant rules. Once the function detects redundant rules, \(A_c \) will select one rule with the highest confidence value as strongest rule (line 7-12).

Figure 1 depicts the phases in \(A_c \) rule generation process. Process no 1-10 is a frequent item set generation phase and process no 11-18 is a rule generation phase.

EXPERIMENTS

Five data sets from University of California Irvine (UCI) (Murphy 1997); Breast Cancer (BRS), Australian Credit Card (AUS), Diabetes (DBS), Hepatitis (HPT), and Heart Diseases (HRT) were used in this study. For both \(A_c \) and \(R_c \) the data preparation and classification modeling uses the same approach. During preprocessing, the entire datasets were pre-processed where all unknown numeric attributes were replaced with mean value while max value
for character attributes. The data were discretised using boolean reasoning technique (Nguyen, 1998). The data were split into training and testing using n-fold cross-validation technique where 9 folds of data is prepared based on ratio of training and testing; 90:10, 80:20, 70:30, 60:40, 50:50, 10:90, 20:80, 30:70, and 40:60. A_c was developed using Microsoft Visual Basic and R_c, used Rosetta v3.2, the Rough Set Data Analysis (Ohrm, 2002).

FIGURE 2. Modeling process of A_c and R_c

A_c’s minimum support was set to 60% and 5% for minimum confidence during mining. The values were the best parameter which determined during primarily experiment conducted on the tested dataset. The determination of a minimum support and confidence value is the most important criteria in AR since it will control rule generation (Liu at al., 2000). If minimum support is set too high, there is a possibility for frequent item set that does not satisfy minimum support but with low confidence, large amount of frequent items will be generated (Liu at al., 1998). Both classifiers used the same training and testing set of data.

In this section, the experimental result of A_c and R_c are discussed. A_c was compared with R_c in classification accuracy, number of rules generated, and distribution of rules. The goals and notation of the experiments is formalized. The apriori classifier model and rough classifier model are given as A_c and R_c respectively. The training and testing data are given as tr and ts. The accuracy and the number of rule generated for both classifiers are given as acc and nr. The rule that classified to positive and negative case are given as $+re$ and $-re$. Table 1 depicts the experimental result from the best model obtained from A_c and R_c. The selection of the best model is based on three criteria; higher accuracy, fewer rules generated, and larger total testing data involved. The capital b_{NR} and b_{ACC} indicate the best model from particular classifier (A_c and R_c) in terms of accuracy and number of rules respectively.
The two rightmost columns in Table 1 indicate the best in two categories: the best model based on the number of rules (NR) and the best model on accuracy (ACC). R_c is more likely to be the best model of quantity rule generation because it had generated fewer rules than A_c for four datasets with significant difference. A_c produced more rules in using a small training data during training. Meanwhile, R_c generates fewer rules from mining a larger amount of data. A_c gives higher accuracy than R_c in three of the cases depicted by ACC but these differences are not statistically significant. R_c seems to perform better with simple and fewer rules, indicating that good decision can still be made within limited knowledge and not necessary more knowledge contributed to the decision. The rules via knowledge generated by A_c may have redundancy. Therefore, R_c can be considered as good classifier as well as A_c. R_c can successfully classify more testing data (10:90) and gives the same result as A_c. A mathematical formula is defined to select the best model among A_c and R_c and is written as follows:

$$\forall R_c, A_c, R_c \succ \text{better, } A \rightarrow \text{acc } (R_c < A_c)$$

$$\forall R_c, A_c, R_c \succ \text{better, } A \rightarrow \text{nr } (R_c \succ A_c)$$

R_c is selected as better if the NR of R_c is fewer than A_c and the ACC of R_c is higher than A_c. Similarly the formula applies to A_c. From the experiments, the mathematical formulas define the best model among R_c and A_c is written as follows:

<table>
<thead>
<tr>
<th></th>
<th>A_c</th>
<th>R_c</th>
<th>b_{NR}</th>
<th>b_{ACC}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$tr:ts$</td>
<td>nr</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$+re$</td>
<td>$-re$</td>
<td></td>
</tr>
<tr>
<td>AUS</td>
<td>30:70</td>
<td>81.3</td>
<td>6446</td>
<td>10:90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4323</td>
<td>2123</td>
</tr>
<tr>
<td>BRS</td>
<td>20:80</td>
<td>91.6</td>
<td>994</td>
<td>10:90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>969</td>
<td>25</td>
</tr>
<tr>
<td>DBS</td>
<td>10:90</td>
<td>67.3</td>
<td>490</td>
<td>10:90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>441</td>
<td>49</td>
</tr>
<tr>
<td>HRT</td>
<td>30:70</td>
<td>80.9</td>
<td>7493</td>
<td>10:90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4436</td>
<td>3057</td>
</tr>
<tr>
<td>HPT</td>
<td>20:80</td>
<td>79.5</td>
<td>9631</td>
<td>20:80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>9361</td>
</tr>
</tbody>
</table>
\begin{align*}
 acc (R_C \{ A_c \}) & \Leftrightarrow b_{ACC}(R_C) \\
 nr (R_C \{ A_c \}) & \Leftrightarrow b_{NR}(R_C)
\end{align*}

We extend our analysis by investigating the response of the rules in both techniques towards positive response (+re) and negative response (-re). Positive and negative response refers to the precedence (THEN) part of rule which act as target class. The aim of this analysis is to inspect how both classifiers are able to generate balance rule for different if the problem contain unbalance target class. From the experiment, it shows that R_C generates equal number of rules for both +re and −re case but A_C was biased to certain case even though the distribution of target class is badly distributed. R_C generates good distribution and fewer rules with high accuracy due to the default rule generation framework. Rules generated from this framework are default rules which are more compact and shorter despite the training data size involved is small (Mollestad, 1997). For A_C, rule production are dependent on three factors; the number of interesting attribute combination contain in dataset, the distribution of target class in dataset whether it is equal or bias for certain class, and the setting of minimum support and minimum confidence. A_C has the possibility to generate more rules although from a small training data but contain many interesting attribute combinations. Both classifiers have their strength to be selected for mining purposes.

CONCLUSIONS

In this paper, a modified apriori classifier A_C is proposed. Then a comparative study is carried out for the A_C classifier and the rough classifier R_C in terms of ACC and NR and rules distribution for positive and negative cases. The experimental result shows that A_C is comparable to R_C in several measures. In most dataset A_C is competitive to R_C in classification where several models indicate that A_C ’s accuracy is higher than R_C. However, in most cases A_C generates more rules than R_C besides DBS dataset. The significant variant in rule generation is due to the way they handle the data. A_C views frequency of interesting attribute as an important issue while R_C considers the distinction between attribute’s values during reduction interesting through the discernibility concept. In conclusion, the modified apriori has potential to be used as an alternative classifier.

REFERENCES

Han, J., Pei, Y. & Yin, Y. 2000. Mining frequent patterns without candidate generation. Proc. of the 2000 ACM SIGMOD Int. Conf. on Management of Data, pp. 1-12

Mohamad Farhan Mohamad Mohsin
College of Arts & Sciences, Universiti Utara Malaysia, 06010 UUM Sintok, Kedah, Malaysia
farhan@uum.edu.my

Azuraliza Abu Bakar
Faculty of Science and Information Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia.
aab@ftsm.ukm.my

Mohd Helmy Abd Wahab
Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia
helmy@uthm.edu.my