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High Performance Simulation for Brain Tumours
Growth Using Parabolic Equation on

Heterogeneous Parallel Computer System
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ABSTRACT

Brain tumour is one of the prevalent cancers in the world that lead to death.
Based on the present knowledge of the properties of gliomas, mathematical
models have been developed by researchers to quantify the proliferation and
invasion dynamics of glioma within anatomically accurate heterogeneous
brain tissue. This paper focuses on the implementation of parallel algorithm
for the simulation of brain tumours growth using one dimensional parabolic
equation, designed on a distributed parallel computer system. The numerical
finite-difference method is focused on a design of a platform for discretising
the parabolic equations. The result of finite difference approximation using
explicit, Crank-Nicolson and fully implicit methods will be presented
graphically. The implementation of parallel algorithm based on parallel
computing system is used to capture the growth of brain tumour. Parallel
Virtual Machine (PVM) is emphasized as communication platform in parallel
computer systems. The software system functions to enable a collection of
heterogeneous computers to be used as synchronized and flexible concurrent
computational resource. The parallel performance measurement will be
analysed from the aspect of speedup, efficiency, effectiveness and temporal
performance.

Keywords: Parallel computer system, parallel virtual machine, mathematical
model, brain tumour growth, Crank-Nicolson method.

ABSTRAK

Barah otak antara barah utama yang menyumbang kepada peningkatan
kematian disebabkan kanser. Fenomena ini menarik minat  pengkaji daripada
pelbagai bidang untuk mendalaminya, termasuklah ahli-ahli matematik.
Terdapat beberapa model matematik telah dibangunkan berdasarkan
pengetahuan tentang ciri-ciri sel barah dan pertumbuhannya. Kajian ini
fokus kepada penggunaan teknik algoritma selari dalam meyelesaikan dan
menggambarkan pertumbuhan sel barah otak menggunakan persamaan
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parabolik satu dimensi. Kaedah penghampiran beza terhingga, dikaji dan
digunakan dalam pendiskretan persamaan parabolik. Kaedah tersirat, tak
tersirat, dan Crank-Nicolson untuk penghampiran beza terhingga dianalisis
dan hasilnya ditunjukkan dalam bentuk graf. Dalam kajian ini, algoritma
selari dilaksanakan menggunakan sistem pengkomputeran selari. Mesin Selari
Ingatan Maya iaitu PVM digunakan sebagai platfom komunikasi dalam sistem
komputer selari. PVM merupakan satu perisian yang membolehkan sekumpulan
komputer heterogenus digunakan sebagai satu sumber pengiraan yang
bekerjasama secara teratur dan fleksibel serta dihubungkan oleh satu sistem
rangkaian. Prestasi algoritma selari juga dianalisis dari aspek kecepatan,
kecekapan, keberkesanan dan masa pelaksanaan.

Katakunci: Sistem pengkomputeran selari, mesin maya selari, permodelan
matematik, pertumbuhan barah otak, kaedah Crank-Nicolson.

INTRODUCTION

The human body is made up of many types of cells. Each type of the cells
has special functions.  Most of the cells in the body grow and then divide in
an orderly way to form new cells as they keep the body healthy and working
properly. The cells will divide often and without any order when they lose the
ability to control their growth. The extra cells from a mass of tissue are called
tumours.

Brain tumour is one of the prevalent cancers in the world and is one of
the leading causes of death from cancer. The brain tumours can be benign
(not cancerous) or malignant (cancerous). Mathematical modelling of
biomedical phenomena (Murray 2003) can be extremely helpful in analyzing
factors that may contribute to the complexity intrinsic in insufficiently
understood developmental process disease. Based on present knowledge of
the properties of gliomas, a mathematical model has been developed to
quantify the proliferation and invasion dynamics of gliomas within anatomically
accurate heterogeneous brain tissue. The implications of the model would be
of considerable interest to not only for neuro-oncologists attempting to
improve the treatment of gliomas but also to those interested in the study of
other diseases for which medical imaging plays a part of the assessment of
the disease (other cancer as well as developmental diseases).

MATHEMATICAL MODEL

The mathematical model has been developed to detect the growth and the
extension of theoretical glioblastomas cells in a matrix that accurately
describes the brain’s anatomy to a resolution of 1 cu mm. By defining a
virtual human brain with the anatomical distribution of grey and white matter
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(the two primary tissue components of the brain) to a resolution of 1 cu mm,
the differential motility of glioma cells in grey and white can be modeled.
The glioma cells migrate more rapidly in white than in grey matter (Giese &
Westphal, 1996; Silbergeld & Chicoine, 1997), the motility coefficient
dependence on the local tissue composition. The model can be written
mathematically as:

(1)

where c(x, t) is the concentration of glioma cells at any position x and time
t, ρ is the units of per day and represents the net rate of growth of tumour
cells, including proliferation, loss and death, D denotes the units of cm2 per
day and represents the diffusion coefficient of cells in brain tissue, D(x) = D

g

(constant for x in grey matter) and D(x) = D
w
 (constant for x in white matter).

As noted, the diffusion coefficient in white matter is larger then that in
grey matter: D

w
 > D

g
. ∇ represents the spatial gradient.  The diffusion term

describes the active migration of the glioma cells using a simple Fickian
diffusion (Murray 1993) where cells move from regions of higher to lower
densities. Tumour cells are assumed to grow exponentially.

The boundary condition simply requires that glioma cells are not allowed
to migrate outside of the brain tissue.  Assume that the tumour has grown to
about 4000 cells as a local mass before it begins to diffuse. We used the
growth rate, ρ ≈ 0.012/day (Alvord & Shaw 1991; Swanson 1999; Swanson
et al., 2000) and diffusion coefficient, D ≈ 0.0013cm2/day (Swanson 1999;
Swanson et al. 2000) in the model as suggested for high-grade gliomas
[Swanson, Alvord & Murray 2000].

NUMERICAL SIMULATION AND DISCUSSIONS

THE STANDARD FORM

The model equation is a parabolic equation and it can be solved using
numerical finite difference methods. From equation (1),

(2)
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Let D(x) = D as a constant, the non-dimensionalizing process in shown  as:

with dimensionless variables:

Then,

and

Equation (2) transforms to
 

Let ,

Applying the function of a function rule to the left side,

Let , (3)
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THE DISCRETIZATION OF THE MATHEMATICAL MODEL

The finite-difference approximation to equation (3) can be written as,
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(4)

For 0 ≤ θ ≤ 1. θ = 0 gives the explicit scheme, θ = 1

2
 the Crank-Nicolson,

and θ = 1 a fully implicit backward time-difference method. The equation (4)
can be written in the matrix form:
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where p = (1 + 2λθ), s = –λθ, r = [1 + α + 2λ(1 – θ)] and q = λ(1 – θ).

SOLUTION USING THE FINITE-DIFFERENCE METHOD

The linear system from the problem statement has been solved for three
finite-difference approximations: explicit, Crank Nicolsan, and fully implicit
methods using Gauss-Seidel iterative method with C programming under

Linux environment. When θ = 0, it gives the explicit method, whenθ = 1

2
, it

gives the Crank-Nicolson method and when θ = 1 it gives the implicit
method.  The results from the sequential algorithm using C programming are

shown in Table 1, where 
  
∂ =x

1

200
,
  
∂ =x

1

10
 for 3 days.
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Table 1 summarised the number of tumour cells that had been computed
using three finite-difference methods. The data for the Crank-Nicolson and
fully implicit methods are quite similar compare to the data that compute
using explicit method.

The graphs visualise the pattern of the brain tumour growth using
explicit method (Figure 1), Crank-Nicolson (Figure 2) and the fully implicit
method (Figure 3). It can be concluded that the explicit method is not suitable
to solve the mathematical model since the curve is not smooth and cannot
capture the real image of the tumour cells. The step size in time must be
small in order for the explicit method to work properly. The problem will
occurr as we make the grid size small, the number of computation increase
and the round off errors will also increase. The Crank Nicolson implicit and
the fully implicit method showed a smooth curve and relevant to visualise the
growth of the tumours. The implicit method has an advantage over the
explicit method, since the step size can be made larger without worrying
about excessive buildup of round off error.

Both Crank-Nicolson and the fully implicit method are relevant to
capture the real life problem. As a result, Crank-Nicolson method will be
chosen to be applied in the mathematical model to visualise the growth of
brain tumour for 30 days.  This is because of its stability and accuracy.

PARALLEL ALGORITHM

GAUSS SEIDEL RED BLACK ITERATIVE METHOD

To implement the parallel algorithm in solving the finite difference equation,
Gauss Seidel Red Black (GSRB) algorithm is used. The iterative method

TABLE 1. The results for three finite-different methods

      Methods Explicit Crank-Nicolson Fully Implict

Grid θ = 0 θ = 0.5 θ = 1.0

1 4146.96 4593.47 4646.61
2 9004.30 8268.93 8214.44
3 10055.12 10620.65 10424.19
4 12626.83 11817.62 11568.04
5 12354.69 12270.09 12028.38
6 12354.69 12270.09 12028.38
7 12626.83 11817.62 11568.04
8 10055.11 10620.65 10424.19
9 9004.30 8268.93 8214.44

10 4146.96 4593.47 4646.61
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FIGURE 1. Graph for explicit method
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FIGURE 2. Graph for Crank-Nicolson
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FIGURE 3. Graph for fully implicit method
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contains 2 sub domain, ΩR and ΩB. There is communication between ΩR and
ΩB. The calculation of this method is shown by the equation (5) and (6),

i. Grid calculation at ΩR:
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ii. Grid calculation at ΩB:
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The GSRB iterative using parallel computing shows convergence very fast
compared to the parallel algorithm using Gauss Seidel (GS) iterative. GSRB is
a data decomposition approach that divides arrays among local processors to
minimize the communication. The data structure has to be decomposed where
given set of ranges assigned to particular processors must be physically sent
to those processors for processing to be done. The result must be sent back
to whichever processors responsible for coordinating the final result.

The simple GS update strategy may be appropriate in a sequential
program and often preferred over Jacobi strategies because they allow
solutions of comparable accuracy to be obtained using less iteration. However,
for the solution of large sparse matrix problem, the GSRB parallel algorithm
is more suitable to be implemented compared to the GS.

THE VISUALIZATION OF THE BRAIN TUMOUR GROWTH USING
CRANK-NICOLSON

The number of cancer cells is computed by using parallel algorithm with
PVM. The tumour is assumed growing to about 4000 cells as a local mass
before it begins to diffuse and the model equation (1) applies in order to
avoid simulating a case of gliomatosis cerebri for which tumour cells have
invaded throughout the brain without a single dominant tumour mass (Swanson,
Alvord & Murray 2002). The boundary condition simply requires that glioma
cells are not allowed to migrate outside of the brain tissue.

The concentration gradient of brain tumour cells is represented by the
curves in Figure 4 for every 5 days within 1 month. The graph has shown that
in the first 5 days, the tumour cells only proliferate to form a small dense
lesion. After 20 days, the tumour cells become highly diffusive. The tumour
cells have diffused to more than 160,000 after 30 days.

Since that the glioma are diffuse tumour, only a small portion of actual
tumour can be predicted. The length of the growth area that consist of tumour
cells is only 0.167cm within 30 days. From the graph of the growth of brain
tumour, we can also conclude that the tumour grow slowly and quickly
diffusing.
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FIGURE 4. The growth rate of brain tumour

FIGURE 5.  Detection of brain tumour growth using CT scan

Figure 5 is the results in British Journal of Cancer (2002) 86, 14-18,
written by KR Swanson, EC Alvord Jr and JD Murray. The section of the
virtual human brain in the figure above is in horizontal planes. The left
column of the human brain section represents the tumours at diagnosis using
CT-detectable tumours with average diameter of 3cm, while the right represents
the same tumours at death. The CT (or CAT) scan is a series of detailed
pictures of the brain. The pictures are created by a computer linked to an X-
ray machine and denoting the high density area of tumour cells. The elapsed
time between diagnosis and death for this virtual glioma is approximately 158
days.
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The results that is presented using PVM programming shown in Figure 4
is only a small area, about 2.78% of the tumour at death. For the detection
of the growth of cancer cells in human brain using parallel computing, the
area can be predicted broadly by using the different net proliferation rate, ρ
and diffusion coefficient, D. The various area of the human brain has the
different value for ρ and D.

ANALYSIS OF THE PERFORMANCE OF PVM

The parallel performance measurements such as time execution, speedup,
efficiency, effectiveness and temporal performance are analyzed to proof
parallel algorithms is significantly better than the sequential algorithms. The
parallel implementation of an algorithm involves the division of total workload
into a number of smaller tasks, which can be assigned to different processors
and executed concurrently, which allows the large problems of iterative
methods converge faster to the solution. The analysis of the executive time by
parallel programming helps to understand the barriers of high performance
computing and how improvement can be done by increasing the number of
processors. As the cluster gets larger, it becomes more important and efficient
for solving real-life problems.

In the PVM implementation of the modeling codes there is a master task
and there are a large sparse problem number of worker tasks. The main job
of master task is to divide the region domain into sub-domains and distribute
them to worker tasks. The worker tasks perform execution computation and
communication after each time step.

TABLE 2.  Time, convergence and count for parallel and sequence algorithm

Gauss Seidel Red-Black with Gauss Seidel with Sequence
PVM  Algorithm

Time (microsecond) 50820 632821
Convergence 1.09139e-11 4.18368e-11
count 64 74

Table 2 shows that the executive time, convergence and number of
iterations for solving the mathematical model using parallel GSRB algorithm
with PVM and sequential GS algorithm. The execution time for parallel GSRB

with PVM is about 10 times faster than sequential GS algorithm. This shows
that parallel algorithm is significantly better than sequence algorithm. Besides
that, parallel GSRB is more convergence compare to its sequential algorithm.
The iteration for GSRB algorithm to be converging is only 64 while the GS

with sequence algorithm perform 74 iterations for convergence.
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Amdahl’s law states that the speed of a program is the time to execute
the program while speedup is defined as the time it takes a program to
execute in serial (with one processor) divided by the time it takes to execute
in parallel (with many processors). The formula of speedup for a parallel
application is given as

,

where Time(1) denotes execution time for a single processor and Time(p) is
the execution time using p parallel processors.

Figure 6 shows the speedup graph is the straight linear and as well as the
number of processors increases, p. It is because the distributed memory
hierarchy reduces the time consuming access to a cluster of workstations.
According to Amdahl’s Law, the speedup increases with the number of
processors increase up to the certain level.

The efficiency of a parallel program is a measure of processor utilisation.
Figure 7 depicts the efficiency decreases with the increasing of number of
processors, p. The decrease of efficiency contributed by the factors of poor
load balance when imbalance workload distributed among the different
processors. It is also contributed by the idle time, time startup and waiting
time for all processors to complete the computations. Efficiency is the
speedup divided by the number of processors used.

        

FIGURE 6. The speedup vs. number of processors
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Effectiveness is used to calculate the speedup and the efficiency. The
effectiveness is

   

where p is number of processors and Time(t) is execution time using p
parallel processors.

Figure 8 shows that the effectiveness increase when the number of
processors are increased. The formula of effectiveness depends on the
speedup. When the speedup increases, the effectiveness will also increase.
Furthermore, the use of the number of processors is added to make the graph
increase. The graph does not show the straight line because there is a
communication between eight of the processors.

FIGURE 8. Effectiveness vs. number of processors
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FIGURE 7. Efficiency vs. number of processors
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Temporal performance is a parameter to measure the performance of a
parallel algorithm which is

Figure 9 shows that the temporal performance is increased with the
increasing number of processors. The graph below shows a straight line
because of the execution time is decreasing extremely versus the
number of processors.

CONCLUSIONS

A mathematical model using the one dimensional parabolic equation regarding
the growth of brain tumours has been presented. The explicit, Crank-
Nicolson and fully implicit methods are used in solving the equation. The
graphical results show that the Crank-Nicolson and fully implicit methods are
more relevant to describe the growth of tumour cells, compared to the explicit
method. Since the Crank Nicolson method is well known of its unconditional
stability and good accuracy, this method is choosen to visualise the growth
of brain tumors for 30 days.

The analysis of the performance measurements such as time execution,
speed up, efficiency, effectiveness and temporal performance proved that
parallel algorithm is significantly better than the sequential algorithm especially
in terms of the execution time. The Gauss Seidel Red Black is effective
iterative method and found to be well suited for parallel implementation on
the PVM where data decomposition is run synchronously and concurrently at
every time level.

FIGURE 9. Temporal performance vs. number of processors
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Finally, the development of mathematical model in visualising the
growth of human brain tumour can be easily extended into multiple dimensions
parabolic equation. More processors could also be used in solving the
mathematical model in order to improve the speed and performance on a
distributed parallel computer systems.

REFFERENCES

Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek & Vaidy
Sunderam. 1994. PVM: Parallel Virtual Machine, A User’s Guide and Tutorial
for Network Parallel Computing. Cambridge, London: MIT Press.

C. Xavier, & S.S. Iyengar. 1998. Introduction to parallel algorithms. New York: John
Wiley & Sons, Inc.

E.H.Twizell. 1984. Computational Methods for Partial Differential Equations. New
York: John Wiley & Sons, Inc.

G.D. Smith. 1985. Numerical Solution of Partial Differential Equations. London:
Oxford University Press.

Hesham El-Rewini, Ted Lewis. 1997. Distributed and Parallel Computing. Greenwich:
Manning Publications Co.

Kristin R. Swanson, Ellsworth C. Alvord, Jr & J. D. Murray. 2004. Dynamics of a
model for brain tumours reveals a small window for therapeutic intervention.
Discrete and Continuous Dynamical System-Series B 4(1): 289-295.

Kristin R. Swanson, Ellsworth C. Alvord, Jr & J. D. Murray. 2002. Virtual brain
tumours (gliomas) enhance the reality of medical imaging and highlight
inadequacies of current therapy. British journal of Cancer (2002) 86, the Cancer
Research Campaig :  14-18.

Kristin R. Swanson, Ellsworth C. Alvord, Jr & J. D. Murray. 2000. A quantitative
model for differential motility of gliomas in grey ad white matter. Cell Prolif.
(33): 317-329.

Kristin R. Swanson, Ellsworth C. Alvord, Jr, J. D. Murray, Quantifying efficacy of
chemotherapy of brain tumours with homogeneous and heterogeneous drug
delivery. Acta Biotheor (50): 223-237.

Norma Alias. 2003. Pembinaan dan pelaksanaan algoritma selari bagi kelas TTHS dan
TTKS dalam menyelesaikan persamaan parabolik pada sistem komputer selari
ingatan teragih. Ph. D. Diss., Universiti Kebangsaan Malaysia, Bangi, Malaysia.

Michael Kofler. 1997. Linux – Installation, Configuration, and Use. London: Addison-
Wesley.

Richard L. Burden & J. Douglas Faires. 1993. Numerical Analysis. (5th Ed.). Boston:
PWS Publishing Company.

Pheng H.S.
Norma Alias
Norfarizan Mohd Said
Department of Mathematics
Universiti Teknologi Malaysia
81310 Skudai, Johor.

3 Pheng 7/11/08, 11:54 AM52


