
Jurnal Teknologi Maklumat & Multimedia 3(2006): 139-155

Application of Simulated Annealing and Genetic
Algorithms in Solving Single Level

Lot-Sizing Problems

NASARUDDIN ZENON, ROSMAH ALI & AB RAHMAN AHMAD

ABSTRACT

The single level lot-sizing problem arises whenever a manufacturing com-
pany wishes to translate an aggregate plan for production of an end item into
a detailed planning of its production. Although this problem is widely studied
in the literature, only laborious dynamic programming approaches are
known to guarantee global minimum. Thus, stochastically-based heuristics
that have the mechanism to escape from local minimum are needed. Two
implementations of stochastic local search techniques for solving single level
lot-sizing problems are proposed and the results of applying them to example
problems are discussed. In the first implementation, simulated annealing is
used to examine the neighborhoods of the replenishment points of an initial
schedule obtained by following the standard Silver-Meal criterion. This
provides a way of escaping local minimum in the total relevant costs per unit
time for the current replenishment and thus improves the initial lot-sizing
schedule. In the second implementation, a lot-sizing population-generating
heuristic is used to feed chromosomes to a genetic algorithm which will try
to find the optimal lot-sizing scheme without going through the process of
examining the legality of the scheme for every generation. The application of
the heuristic to generate an initial population results in a faster convergence
in finding the optimal lot-sizing scheme. The result of this research shows
that for uncapacitated lot-sizing problems using the sample of data, simu-
lated annealing outperforms genetic algorithm in terms of run time and
convergence rate. However, genetic algorithm outperforms simulated anneal-
ing in terms of a lower total production cost for problems with production
penalties.

Keywords: Simulated annealing; genetic algorithm; lot-sizing

ABSTRAK

Masalah pensaizan lot satu-aras timbul apabila sebuah syarikat pembuatan
ingin menterjemahkan pelan pengeluaran agregat untuk suatu item akhir

10-Nasaruddin 4/26/05, 9:26 AM139

140

kepada pelan pengeluaran yang terperinci.Walaupun masalah ini kerap
dikaji, namun setakat ini hanya pendekatan pengaturcaraan dinamik yang
rumit dapat menjamin nilai minimum global. Oleh itu, heuristik stokastik
yang mempunyai mekanisma untuk melepasi minimum global adalah
diperlukan. Dua perlaksanaan teknik carian tempatan stokastik bagi
menyelesaikan masalah pensaizan lot satu-aras dicadangkan, dan hasil
perlaksanaan ini dibincangkan. Dalam perlaksanaan pertama, simulated
annealing digunakan untuk memeriksa kejiranan titik-titik pembaharuan
semula bagi jadual awal yang diperolehi melalui kaedah Silver Meal. Ini
memberikan satu cara untuk melepasi minimum tempatan dalam nilai kos
keseluruhan seunit masa untuk pembaharuan semasa dan memperbaiki
jadual pensaizan lot awal. Dalam perlaksanaan kedua, suatu heuristik yang
menjanakan populasi untuk pensaizan lot digunakan untuk menyediakan
kromosom bagi algoritma genetik yang akan mendapatkan skema pensaizan
lot optimum tanpa memeriksa kesahihan skema bagi setiap generasi.
Penggunaan heuristik untuk menjanakan populasi awal menghasilkan
penumpuan yang lebih cepat dalam pencarian skema pensaizan lot yang
optimum. Hasil penyelidikan ini menunjukkan bahawa untuk data sampel
bagi masalah pensaizan lot kapasiti-tanpa-batas, simulated annealing
mengatasi algoritma genetik dari aspek masa larian dan kadar penumpuan.
Walau bagaimanapun algoritma genetik mengatasi simulated annealing
daripada aspek jumlah kos keseluruhan pengeluaran yang lebih rendah bagi
masalah dengan penalti pengeluaran.

Kata kunci: Simulated annealing; algoritma genetik; pensaizan lot

INTRODUCTION

In manufacturing environment, a lot size refers to the amount of a particular
item that is ordered from the plant or issued as a standard quantity to the
production process. Lot-sizing or lot size scheduling refers to the determination
of appropriate lot sizes of items to be produced in each period of the
production planning horizon such that the setup and the inventory holding
costs associated with the schedule for the whole of the planning horizon are
minimized. The single level lot-sizing problem without backlogging is to find
a feasible production schedule of end items over a time horizon consisting of
T period such that the total inventory holding cost plus the setup cost is
minimized. Assumptions made in this problem are that the initial inventory
is zero and the first period demand is non-zero. Let d

t
, p

t,
 and I

t
 be the

demand rate, production quantity and inventory level at the end of period t
respectively for t = 1,2,…, T. Furthermore let C be the total variable cost
which is the sum of the setup cost (S) plus the unit holding cost (h). The
mathematical formulation of the problem can be stated as follows:

10-Nasaruddin 4/26/05, 9:26 AM140

141

Minimize:

C S p hIt t

T

T

= () +[]
=

∑ δ
1

(1)

Subject to:

I
t-1

 + p
t
 – I

t
 = d

t
(t = 1,2,…,T)

I
0
 = 0

p
t
, I

t
 ≥ 0 (t = 1,2,…,T)

Where:

δ p
if p
if pt

t

t
() = =

>
⎧
⎨
⎩

0 0
1 0

The lot sizes are simply the accumulated demands for each order interval

and thus equal to pt

t c

e

=

∑ where 1 ≤ c ≤ e ≤ T. Item deliveries are planned only

for periods with positive demands. If the demand in an order receipt period
is zero, the order receipt is moved ahead to the first subsequent period with
a positive requirement (Tersine 1994).

The Wagner-Whitin algorithm (WWA) (Wagner & Whitin 1958) and its
variant, which are dynamic programming approaches in solving the single
level lot-sizing problem as described previously, are the only known algorithms
that will guarantee convergence to the optimum solution of the lot-sizing
problem. However, the algorithms are often criticized as being difficult to
explain and compute. For this reason, WWA often serves as a benchmark
against which to measure the performance of non-optimal but less complex
lot-sizing approaches (Tersine 1994).

The Silver-Meal (SM) heuristic (Silver & Meal 1973) uses criterion (2)
to determine production quantities x

t
 for t = 1,2,…,T. Specifically, given d

t
,

the demand in period t, the setup cost S and the holding cost per unit per time
h, it is favorable to include d

k
 in the production x

t
 if,

S h t d k S h t d kt

t

k

t

t

k

+ −()
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ≤ + −()

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ −()

= =

−

∑ ∑1 1 1
1 1

1

/ / (2)

The Silver-Meal heuristic, as shown by Zenon and Ahmad (2001) and
Ritchie and Tsado (1986), is one of the most efficient techniques with
reasonable cost performance (with respect to equation (1)) for lot-sizing

10-Nasaruddin 4/26/05, 9:26 AM141

142

problems having deterministic time-varying demand requirements. However,
as the variation in demand increases, as reflected in higher values of
coefficient of variation in demand (CVD), the performance of the algorithm
deteriorates (please refer to Zenon Ahmad (2001) and Ritchie Tsado (1986)
for detailed results). Indeed, one of the originators of the algorithm in Silver
and Peterson (1985) noted that this method guarantees only a local minimum
in the total relevant costs per unit time for the current replenishment and that
there are two situations in which the algorithm can lead to significant cost
penalties in equation (1). These are:
1. When the demand pattern drops rapidly with time over several periods.
2. When there are a large number of periods having no demand.

Despite the shortcoming of the SM heuristic in dealing with complex
demand patterns, any criterion based on (2) is an excellent determinant for
production quantities in any particular period. Thus, in this paper we examine
the advantages of adapting two stochastic based methods for solving single
level lot-sizing problems. In the first implementation, the SM criterion
provides an initial schedule in the form of periodic production quantities,
which we will call centre points, to be manipulated by simulated annealing
(SA) to find better schedules. In the second implementation, genetic algorithms
GA is fed with populations of valid lot size schedules generated by a heuristic
developed in Ahmad, Zenon and Mi Yusuf (1999).

AN OVERVIEW OF SIMULATED ANNEALING

SA is a search process that has its origin in the field of statistical mechanics.
It was first developed by Metropolis et al. (1953) as an approximate
numerical simulation model for describing the physical annealing process of
condensed matter. For optimization purposes, SA is a probabilistic method
which operates on an energy function E(X

i
) of the independent variables X

i
.

An assignment for X
i
is called a configuration. The procedure walks in the

space of these configurations, where the direction of the next step is
dependent on the energy value of the neighboring configurations (Beringer et
al 1994). A neighbor to a configuration

X

i
 differs only in the assignment of

one variable.
In general, if t is a control parameter and the procedure is started from

the maximum value of t, a move from configuration X
i
to X

i+1
is made with

a probability

P

t
(X

i+1¨
← X

i
) = P

t
(E(X

i+1
) - E(X

i
)) for 0 < t < T where T is to be

determined by the modeler as the maximum allowable value of t. As noted
by Beringer et al (1994), in general SA has the tendency to select configurations
with lower energy. Furthermore, it can be proved that SA always converges
to a local minimum of the energy function (a stable state) as t → 0 provided
the transition probabilities P

t
 are chosen such that these distributions obey:

10-Nasaruddin 4/26/05, 9:26 AM142

143

P X X

P X X

E X E X

t
t i i

t i i

i i+

+ +

+←()
←()

= − () − ()⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1

1 1

1exp

Over the last two decades, SA has been applied to many scheduling
problems, in academia as well as in industry, with considerable success
(Pinedo & Chao 1999). For scheduling purposes, SA selects candidate
schedules from a predefined neighborhood of a schedule in a manner that
loosely mimics the gradual cooling of a metal. Early in the search process,
a traditional SA may make wild random changes to the schedule. However,
as time goes on, the schedule becomes less volatile (i.e., is “cooled”) and the
approach becomes more and more greedy (Hopp & Spearman 2000).

USING SA TO IMPROVE SM BASED LOT-SIZE SCHEDULES

We begin by searching for the lot-sizing sequence S
1
 that minimizes C in (1)

based on SM criterion. The algorithm then performs a number of iterations.
If S

t
 is the current lot-sizing sequence and S

0
is the best sequence found so far

at iteration t of the algorithm then C(S
t
) > C(S

0
) where C(S

t
) and C(S

0
) denote

the corresponding values of the objective function. The sequences S
t
 and S

0

are obtained by perturbing the initial sequence S
1
 at the replenishment points

previously obtained following the SM criterion.
The neighborhood design of S

t
is as follows. Let s

tr
, r = 1…N be a set

of N replenishment points in S
t
 obtained earlier following the SM criterion.

Each of these points will be called a center point. Starting with r = 1, the
neighborhood of each s

tr
 is constructed by shifting all productions

corresponding to non-zero demands in period r+1, r+2,…, r+n, where n is the
next center point, to period r, for 1 ≤ r ≤ n ≤ N ≤ T. The total variable cost
associated with the new sequence created is compared against the previous
total variable cost after the production in r+n is shifted. If the new cost is less
than the previous cost then the candidate sequence S

n
 will be assigned to the

new sequence. Otherwise, production in r+n+1 is also shifted to period r and
the above process is again repeated. If perturbation at center point n leads to
a fruitless search for a lower cost then set r = n and the neighborhood of the
next center point will be examined in a similar way.

The algorithm, in its search for an optimal schedule, moves from one
center point to another and the selection of a candidate schedule is done in
a sequential way. If C(S

n
) < C(S

t
), a move is made by setting S

t+1
 = S

n
.

Furthermore, if C(S
n
) < C(S

0
), then S

0
 is set equal to S

n
. However, if C(S

n
) ≥

C(S
t
), a move is made to S

n
 with probability:

P S S
C S C Sn

t n
t

t

←() = () − ()⎛

⎝
⎜⎜

⎞

⎠
⎟⎟exp

β (3)

10-Nasaruddin 4/26/05, 9:26 AM143

144

Equation (3), which is based upon the Boltzmann distribution function, is
also known as the Metropolis criterion. The schedule S

n
 is rejected in favor

of the current schedule with probability 1 - P(S
t
 ← S

n
) by setting S

t+1
 = S

t
.

Temperatures β
1
 ≥ β

2
 ≥ … ≥ β

t
≥…≥ 0 are control parameters. These

temperatures are gradually lowered throughout the algorithm from a sufficiently
high starting value, startTemp = 12 / (2.0 * randMax), where randMax is
the maximum possible value for the random number generator, to a “freezing”
temperature, stopTemp = 1, where no further changes occur. Here, the
temperature is decreased in stages according to the number of iterations t,
using the temperature update equation β

t+1
 = factor *β

t
 where

factor =

exp(1n(stopTemp / startTemp)/(N-1). At each stage, the temperature is kept
constant until thermal quasi-equilibrium is reached. Quasi-equilibrium state is
a condition when the system remains infinitesimally close to an equilibrium
state at all times.

The whole process of determining the initial temperature, the stopping
temperature, the temperature decrement formula between successive stages
and the number of transitions for each temperature value is called the cooling
schedule. After repeated experimentations we found that a cooling schedule
adapted from the works of Masters (1993) as described previously leads to
faster convergence. Masters uses simulated annealing to escape from local
minima frequently encountered in training feed-forward artificial neural
networks using the back-propagation algorithm.

Several stopping criteria are possible for this procedure. However the
one we have chosen is to let the procedure run until

r = N,

i.e. until the entire

center points are perturbed. Algorithm 1 summarizes the procedure.

Algorithm 1. Simulated Annealing extension of SM heuristic

Set t,r ← 1.
Set β

1
← startTemp

Select an initial lot-sizing sequence S
t
 based on SM criterion

Set S
0
 ← S

t

While (r ≤ N) { // iteratively select center points
Select a candidate schedule S

n
from the neighborhood of S

t
 as defined

earlier.
If C(S

n
) < C(S

t
),

Set S
t+1

 ← S
n

If C(S
n
) < C(S

0
),

Set S
0
 ← S

n

Else if C(S
n
)

≥ C(S

t
),

Set U
t
← random_number ∈ Uniform (0,1)

If , U
t
← P(S

t
 ← S

n
) // Metropolis criterion

10-Nasaruddin 4/26/05, 9:26 AM144

145

Set S
t+1

← S
n

Skip the next center point
Else

Set S
t+1

← S
t

Move to the next center point
Set β

t+1
 ← factor *β

t

Set t ← t + 1
Set r ← r + 1

// end while

A GA IMPLEMENTATION

The working principle of a GA can be depicted in Figure 1. The main part of
a GA cycle constitutes of artificial genetic operators given the names mimicking
their biological counterparts. These operators are called reproduction, crossover
and mutation. A GA begins its search with a random set of solutions, instead
of one solution as it is normally done in classical search and optimization
methods. The random set of solutions constitutes a generation of population.

The fitness function value of a solution is a metric that measures a
relative merit of the solution based on an objective function (for a single-
objective optimization problem with constraints) such as given in (1) and
constraint functions. For each generation, the genetic operators will be
applied to the generation if a termination criterion is not met.

The process of identifying good (user defined or simply above average)
solutions in a population and eliminating bad solutions by replacing them
with multiple copies of good solutions while maintaining a constant population
size are basically the function of the reproduction operator. Obviously as
noted by Deb (2001), by making more copies of good solutions at the
expense of not-so-good solutions, the reproduction operator cannot create any
new solution in the population. Therefore more operators are needed to create
new solutions, and they are namely the crossover and the mutation operators.

There are a number of possible crossover operators in the GA literature.
For detailed descriptions of the designs of the operators the readers are
referred to the seminal works on GA such as Holland (1975) and Goldberg
(1989) and the more recent works of Spears (1998) and Deb (2001).
However, if we were to represent fitness function values as binary strings for
example, we can simply illustrates the crossover operator as an operator that
select two good solutions (called parent solutions) at random from the ones
previously selected by the reproduction operator. Let us define a single-point
crossover operator that proceeded to choose a cross site (again at random)
along the binary string length so that the contents of the right side of this
cross site can be exchanged between the two strings. Thus the operator has
just created two new strings called offspring.

10-Nasaruddin 4/26/05, 9:26 AM145

146

The expected fitness values of the offspring are usually better than the
parent because prior to the crossover process the reproduction operator had
already reproduced parents with some good bit combinations in their string
representations (refer to Goldberg (1989).

The crossover operator is mainly responsible for the search aspect of GA,
even though the mutation operator is also used for this purpose (Deb 2001).
The mutation operator is a bit-wise manipulator that changes a 1 to a 0 and
vice versa, with a mutation probability of

p

m
. The significance of the mutation

operator is that it can reduce the chance of the search from being entrapped
in a neighborhood of a local optimal point.

A basic problem usually encountered after the crossover process as far
as lot-sizing is concerned, is the generation of children that does not preserve
the accumulation of demands at a non-zero demand point and thus producing
invalid lot-size schedules. Thus a method is required to generate an initial
valid population of lot size schedules with respect to the Master Production
Schedule (MPS). Secondly, an effective crossover scheme is required to
preserve schedules validity throughout the crossover process. The generation
of valid lot size schedules is accomplished with the use of a heuristic as
described below, and a description of the crossover scheme that produces
valid schedules follows after that.

As said in the introduction our assumption is that each demand vector d
t

has discrete values that came from fixed horizon environments. The basic
idea of the lot-sizing population-generating heuristic is to start shifting
productions backward in time from the end of the horizon systematically

FIGURE 1. A flowchart of a GA process

10-Nasaruddin 4/26/05, 9:26 AM146

147

while retaining enough inventories to satisfy demands in the later period.
This backward shifting of productions will create alternate or subsequent
periods with zero production levels thus minimizing the overall setup cost.
For problems involving variable setup and holding costs, the algorithm will
advertently create enough zero production levels thus avoiding periods with
large setup and/or holding costs. With this idea in mind, the heuristic is
presented as Algorithm 2.

Algorithm 2: Population-Generating Heuristic

For j=1 to T
a(j) = d(j) /* The initial demand vector from MPS */

While (j ≤ T – 3) do /* The number of times backshift is performed is T-
3 times */
Step 1 /* Backward shifting of production quantities a

j
*/

While (i > posAllele) do
If a(i-posAllele) > 0
 For t = (i-(posAllele-1) t o i
If a(t) ≠ 0

 a(i-posAllele) = a(i-posAllele) + a(t)
 a(t) = 0
End If

 End For
End If

End While

Step 2 /* Assignment of a
j
 to chromosome vector pop

1
(j). If period 1 and

period 2 have non-zero lot-sizes, generate 1 more chromosome pop
2
(j) */

For j=1 to T
pop1(j) = a(j)

 If (k=1) OR (i ≤ posAllele) AND pop1(2) ⌡ 0
 pop2(1) = a(1) + pop1(2)
 pop2(2) = 0
 for j=3 to T

pop2(j) = pop1(j)
Else

inheritParent = inheritParent + 1
End If

Step 3 /* Create an exception for the case when T is divisible by the
number of shifting steps. */
 If (T % (posAllele +1) = 0

10-Nasaruddin 4/26/05, 9:26 AM147

148

 For j=1 to T
 pop2(j) = 0

 Else
 inheritParent = inheritParent + 1

End If
 If (inheritParent = 2)

 For j=1 to T
pop2(j) = d(j)

 inheritParent=0;
 End If

Step 4 /* dual shift processes */
/* For every chromosome pop

k
(j) in Step 1, dual shift processes are generated

by shifting productions a
j
 only to the left of the period h = T/2 + 1.The dual

shift process is similar to the above 3 steps except for the following
replacements: */

 i ← h = T/2 + 1
pop1(j) ← pop3(j)
pop2(j) ← pop4(j)

/*For an exception case when T is divisible by the number of shifting steps,
a replacement T ← T/2 + 1 is required for testing the divisibility condition.
*/
End While

posAllele is the position of the allele or feature value in the chromosome.
Step 2 and Step 3 can be combined in a single step. However, for the sake
of readability, the steps are separated in the algorithm given. Step 4 is
necessary in order to simulate lot size schedules with accumulations of
production at least at two periods, one in the beginning and one in the middle
of horizon. The main advantage of performing this step is the availability of
more useful chromosomes with non-zero crossover points.
The population-generating heuristic generates demand sequence matrices
such as listed in Appendix A and Appendix B which encode valid demand
requirements for all periods in the planning horizon. Pop(0, j) for 1£ j £ T
represents the original demand rate for each period j in the MPS. If we let M
be the total number of chromosomes generated by the lot-sizing population-
generating heuristic, then pop(i, j) represents the lot-sizing schedules in each
chromosome i = 1, 2,…, M. Each pop(i, j) will have a specific fitness value
calculated using Equation 1.

We used a 1-point crossover scheme at a locus (string position) having a
non-zero allele (feature value) in both parents. This way, the children generated
will preserve the accumulation of demands at a non-zero demand point and
thus producing valid schedules as required by the characteristic-preserving

10-Nasaruddin 4/26/05, 9:26 AM148

149

criteria discussed in Kobayashi, Ono and Yamamura (1995; 1996). As an
additional note, the probability of crossover p

c
 = 1.0 and the probability of

mutation, p
m
 = 0.001 for MPS requirements with T ≤ 30; also been used.

NUMERICAL EXAMPLES

All the results obtained in this section are based on applying several
examples to SA and GA developed using Java 2 on a Pentium III processor
with a clock speed of 450 MHz, with 128MB of memory, and running
Windows 98.

Three datasets with various cost structures were used to test SA and GA.
Each dataset contains a demand vector D

j
 for 1 ≤ j ≤ T where T ≤ 30 in all

cases. The three datasets are given in Table 1. Table 2. and Table 3.
respectively.

Dataset 1 contains 2 periods with zero demand whereas each period in
Dataset 2 has non-zero demand. For Dataset 1 we used a constant setup cost
of 100 for each period and a holding cost of 1. On the other hand, Dataset
2 imposes penalties in certain periods by way of large setup (S

j
) and holding

Period j 1 2 3 4 5 6

D
j

75 0 33 28 0 10

TABLE 1. Dataset 1

Period j 1 2 3 4 5 6

D
j

10 15 7 20 13 25
S

j
20 17 10 20 5 50

h
j

1 1 1 3 1 1

TABLE 2. Dataset 2

Period j Demand D
j

Period j Demand D
j

Period j Demand D
j

1 81 11 50 21 77
2 67 12 47 22 96
3 53 13 7 23 64
4 96 14 88 24 87
5 35 15 20 25 51
6 65 16 25 26 7
7 27 17 88 27 85
8 81 18 74 28 82
9 84 19 62 29 53

10 32 20 52 30 96

TABLE 3. Dataset 3: Production request for 30 periods

10-Nasaruddin 4/26/05, 9:26 AM149

150

(h
j
) costs. We compared the feasible lot-sizing schedules produced by SA and

GA with optimal and near optimal schedules produced by other algorithms.
Table 4. and Table 5. summarize the results when SA and GA are compared
with WWA, SM and LUC algorithms.

The feasible production schedules for Dataset 1 and Dataset 2 that were
generated using the lot-sizing population-generating heuristic are given in
Appendix A and Appendix B respectively. The feasible production schedules
for data in Table 4. that were generated by the same heuristic are available
upon request from the first author. As shown in Table 5. pop(4,j) for 1 ≤ j ≤
6 listed in Appendix A is the required schedule to minimize the total variable
cost. This shows that the population-generating heuristic is able to produce
near-optimal schedule even prior to a crossover to be carried out by GA.

The results from applying GA to Dataset 2 showed the superiority of GA

compared to SM and LUC heuristics in producing schedules involving variable
setup and holding costs. The last chromosome produced by GA has a fitness
value representing a total cost that is less than 1% from the optimal WWA.

TABLE 5. Comparative results for Dataset 2

Period j 1 2 3 4 5 6 Total
Variable

D
j

10 15 7 20 13 25 Cost, C

WWA 10 22 0 20 38 0 94
Production SM 32 0 0 20 13 25 124
Quantity LUC 32 0 0 33 0 25 158

SA 32 0 0 20 38 0 99
GA 25 0 27 0 38 0 95

Performance of GA in terms of convergence rate utilizing the parameters
is measured using demand data listed in Table 3. Two cost structures are
used. The setup and the holding costs for the first cost structure is S = RM2.6

Period j 1 2 3 4 5 6 Total
Variable

D
j

75 0 33 28 0 10 Cost, C

WWA 75 0 71 0 0 0 258
Production SM 75 0 71 0 0 0 258
Quantity LUC 75 0 61 0 0 10 328

SA 75 0 71 0 0 0 258
GA 75 0 71 0 0 0 258

TABLE 4. Comparative results for Dataset 1

10-Nasaruddin 4/26/05, 9:26 AM150

151

and h = RM2.39 respectively. The second cost structure has S = RM300 and
h = RM0.2. While the first cost structure has an S/h ratio circa 1, thus
allowing a lot of periods to have positive production quantities, the second
cost structure on the other hand will force the algorithm to produce schedules
with sparse production periods due to the very high setup cost relative to the
holding cost.

The result of applying GA to a population generated by the population-
generating heuristic is compared to the result obtained by SA. The optimum
schedule for the first cost structure is known to be a lot-for-lot assignment
because of the small difference in the setup and holding costs.

The convergence pattern of GA to the optimum total cost is compared to
the result produced by SA and is depicted in Figure 2. and Figure 3. for the
first and the second cost structures respectively. Table 6. and Table 7.
summarize the result of applying GA and SA to demand data in Table 3. using
the two cost structures. Table 8. lists the optimum production lot-size
schedule with a total production cost of 2312.20. The total cost obtained is
confirmed to be optimum by feeding the data to WWA.

FIGURE 2. Convergence of GA and SA for the first cost structure

CONCLUSION

Clearly, for the uncapacitated lot-sizing example above, SA outperforms GA

in terms of run time and convergence rate. This is due to the fact that our
implementation of SA is designed to examine the neighborhoods of at most

10-Nasaruddin 4/26/05, 9:27 AM151

152

FIGURE 3. Convergence of GA and SA for the second cost structure

GA SA

Generation 50 -
Population 74 30 centers (max)
Optimum Total Cost 78.00 78.00
Lot-size Schedule Lot-for-lot Lot-for-lot
Start of Optimum Generations 32 22 (iteration)
Run Time 118000ms 2420 ms

TABLE 6. Comparative results for Dataset 3 with the First Cost Structure

GA SA

Generation 25 -
Population 74 5 centers
Optimum Total Cost 2312.20 2312.20
Lot-size Schedule Table 5.8 Table 5.8
Start of Optimum Generations 20 6 (iteration)
Run Time 12530ms 250 ms

TABLE 7. Comparative results for Dataset 3 with the Second Cost Structure

Period 1 8 14 21 27

Production 424 301 409 382 316

TABLE 8. The optimum lot-size schedule produced by BA-GA and SA

10-Nasaruddin 4/26/05, 9:27 AM152

153

30 center points corresponding to the 30-period planning horizon. GA on the
other hand requires a large initial population size so that the randomized
crossover and mutation operations can produce good reproduction candidates.
However, the performance of GA for problems with constraints in terms of
production penalties in some periods is encouraging. GA outperforms SM, LUC

and SA in terms of achieving a lower total production cost. The population-
generating heuristic is able to produce near optimum schedules as candidates
for reproduction at a very early stage thus enabling GA to selectively work on
‘good’ chromosomes.

The encouraging results obtained lead us to the conclusion that our
implementation of SA and GA for single level lot-sizing problems with or
without production penalties can be extended for the capacitated multi-item
lot-sizing problems. The problem of finding an optimal lot size schedule for
a multi-item capacitated version of the problem is of special importance
though it is known to be NP-complete. The suitability of stochastic searching
techniques in this case gives us the opportunity to explore the possibility of
embedding good lot-sizing criteria into stochastically based heuristics.

APPENDIX A

Chromosomes generated by Population-Generating Heuristic for Dataset 1

pop[0][j]: 75.0, 0.0, 33.0, 28.0, 0.0, 10.0
pop[1][j]: 75.0 0.0 61.0 0.0 0.0 10.0
pop[2][j]: 75.0 0.0 61.0 0.0 0.0 10.0
pop[3][j]: 108.0 0.0 0.0 38.0 0.0 0.0
pop[4][j]: 75.0 0.0 71.0 0.0 0.0 0.0
pop[5][j]: 75.0 0.0 33.0 28.0 0.0 10.0
pop[6][j]: 136.0 0.0 0.0 0.0 0.0 10.0

APPENDIX B

Chromosomes generated by Population-Generating Heuristic for Dataset 2

pop[0][j]: 10.0, 15.0, 7.0, 20.0, 13.0, 25.0
pop[1][j]: 25.0 0.0 27.0 0.0 38.0 0.0
pop[2][j]: 25.0 0.0 27.0 0.0 13.0 25.0
pop[3][j]: 32.0 0.0 0.0 58.0 0.0 0.0
pop[4][j]: 10.0 42.0 0.0 0.0 13.0 25.0
pop[5][j]: 10.0 15.0 7.0 20.0 13.0 25.0
pop[6][j]: 10.0 15.0 65.0 0.0 0.0 0.0
pop[7][j]: 25.0 0.0 65.0 0.0 0.0 0.0
pop[8][j]: 52.0 0.0 0.0 0.0 13.0 25.0

10-Nasaruddin 4/26/05, 9:27 AM153

154

REFERENCES

Ahmad, A. R., Zenon, N. & Mi Yusuf, L. 1999. A Method For MRP Lot-sizing
Problem Representation in Genetic Algorithm. 18th IASTED International
Conference on Applied Informatics (AI 2000). 307-4-002.

Beringer, A., Aschemann, G., Hoos, H., Metzger, M. & Weib, A. 1994. GSAT and
simulated annealing – A comparison. Intellektik, AIDA-94-01: 1-18.

Deb, K. 2001. Multi-objective optimization using evolutionary algorithms. Chichester:
Wiley.

Goldberg, D. E. 1989. Genetic algorithms for search, uptimization and machine
learning. Reading, MA: Addison-Wesley.

Holland, J. H. 1975. Adaptation in natural and artificial systems. Ann Arbor, MI: MIT
Press.

Hopp, W. J., Spearman, M. L. 2000. Factory physics: foundations of manufacturing
management. Singapore: McGraw-Hill International Edition.

Kobayashi, S., Ono, I. & Yamamura, M. 1995. An efficient genetic algorithm for job
shop scheduling problems. Proceedings of the 6th International Conference on
Genetic Algorithms. pp. 506-511.

Kobayashi, S., Ono, I. & Yamamura, M. 1996. A genetic algorithm for Job shop
scheduling problems using job-based order crossover. Proc. IEEE on Genetic
Algorithms. pp. 547-552.

Masters, T. 1993. Practical neural network recipes in C++. Academic Press, Inc.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. Teller, E. 1953.

Equation of state calculations by fast computing machines. Journal of Chemical
Physics, Vol 21, No 6; pp. 1087-1092.

Pinedo, M. & Chao, X. 1999. Operations scheduling: With applications in
manufacturing and services. Boston: Irwin/McGraw-Hill.

Ritchie, E. & Tsado, A. K. 1986. A review of lot-sizing techniques for deterministic
time-varying demand. Production and Inventory Management. pp: 65-79.

Silver, E. A. & Meal, H. C. 1973. Heuristic for selecting lot size requirements for
the case of a deterministic time-varying demand rate and discrete opportunities
for replenishment. Production and Inventory Management 14(2): 64-74.

Silver, E. A. & Peterson, R. 1985. Decision systems for inventory management and
production planning. Second Edition. John Wiley & Sons.

Spears, W. M. 1998. The role of mutation and recombination in evolutionary
algorithms. Ph. D. Dissertation, Fairfax, VA: George Mason University.

Tersine, R. J. 1994. Principles of inventory and materials management. 4th ed. New
Jersey: Prentice-Hall, Inc.

Wagner, H. M., Whitin, T. M. 1958, Dynamic version of the economic lot size model.
Management Science 5: 89-96.

Nasaruddin Zenon, Rosmah Ali and Ab Rahman Ahmad
Department of Industrial Computing,
The Faculty of Computer Science and Information System,
Universiti Teknologi Malaysia,
81310 Skudai, Johor.
rosmah@fsksm.utm.my
ahmadar@utm.my

10-Nasaruddin 4/26/05, 9:27 AM154

