Mapping Eileen Chang’s Novels with a Computational Analysis of Themes and Emotions
Abstract
In the domain of digital humanities, the integration of computational methods with literary studies has opened new approaches to understanding and interpreting literature. This study applies Latent Dirichlet Allocation (LDA) topic modelling and sentiment analysis to eight English novels by Chinese-American author Eileen Chang. The research uncovers seven main themes, reflecting Chang’s focus on women’s lives, cultural intersections, and societal changes in 1940s Shanghai and Hong Kong. The sentiment analysis of Chang's novels revealed Joy as the dominant positive emotion (19.43%) and Fear and Surprise as the most prominent negative emotion (17.21% each), challenging traditional interpretations of her work as predominantly melancholic. The study demonstrates both the potential and limitations of computational methods in literary analysis. While Natural Language Processing (NLP) techniques provide quantitative support and new perspectives, they sometimes fall short in capturing nuanced literary devices like irony and metaphor. The research advocates the convergence of the traditional literary approach and the burgeoning field of digital humanities to provide a comprehensive perspective.
Keywords: NLP; Eileen Chang; topic modelling; sentiment analysis
Full Text:
PDFReferences
Albalawi, R., Yeap, T. H., & Benyoucef, M. (2020). 'Using topic modelling methods for short-text data: A comparative analysis'. Frontiers in Artificial Intelligence, 3(42), pp.1–14. doi:10.3389/frai.2020.00042 PMID:33733159
Arroyo-Barrigüete, J. L. (2023). Sentiment analysis of Lovecraft's fiction writings. Heliyon, 9(1).
Asif, M., Ishtiaq, A., Ahmad, H., Aljuaid, H., & Shah, J. (2020). ‘Sentiment analysis of extremism in social media from textual information’. Telematics and Informatics, 48, 1–20. doi:10.1016/j.tele.2020.101345
Balyan, R., McCarthy, K. S., & McNamara, D. S. (2017). Combining Machine Learning and Natural Language Processing to Assess Literary Text Comprehension. Grantee Submission.
Blei, D. M. (2012). ‘Introduction to probabilistic topic models’. Communications of the ACM, 55(4), pp.77–84. doi:10.1145/2133806.2133826
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). 'Latent dirichlet allocation'. Journal of Machine Learning Research 3, pp.993-1022.
Boon-Itt, S., & Skunkan, Y. (2020). Public perception of the COVID-19 pandemic on Twitter: sentiment analysis and topic modeling study. JMIR public health and surveillance, 6(4), e21978.
Boussalis, C., & Coan, T. G. (2016). ‘Text-mining the signals of climate change doubt’. Global Environmental Change, 36, 89–100. doi:10.1016/j.gloenvcha.2015.12.001
Broadwell, P., Chen, J. W., & Shepard, D. (2019). Reading the Quan Tang shi: Literary History, Topic Modeling, Divergence Measures. Digital Humanities Quarterly, 13(4).
Casillo, M., Colace, F., Gupta, B. B., Santaniello, D., & Valentino, C. (2021). Fake news detection using LDA topic modelling and K-nearest neighbor classifier. In Computational Data and Social Networks: 10th International Conference, CSoNet 2021, Virtual Event, November 15–17, 2021, Proceedings 10 (pp. 330-339). Springer International
Publishing.
Chang, E. (2006). Love in a fallen city. New York Review of Books.
Chen, C. (2020). On the "Gothic style" of "Little Reunion". [Dissertation]. Xiamen University. (Chinese)
Chiru, C., Rebedea, T., & Ciotec, S. (2014, April). Comparison between LSA-LDA-lexical chains. In International Conference on Web Information Systems and Technologies (Vol. 2, pp. 255-262). SCITEPRESS.
Dai, Y. (2020). A New Literary Analysis of The Great Gatsby by Natural Language Processing (Doctoral dissertation, Doshisha University).
Dunđer, I., & Pavlovski, M. (2019, May). Behind the dystopian sentiment: a sentiment analysis of George Orwell’s 1984. In 2019, 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 577-582. IEEE.
Ehrett, C., Ghita, L., Ranwala, D., & Menezes, A. (2024). Shakespeare Machine: New AI-Based Technologies for Textual Analysis. Digital Scholarship in the Humanities, 39(2), 522-531.
Elhadad, M. K., Li, K. F., & Gebali, F. (2020). A novel approach for selecting hybrid features from online news textual metadata for fake news detection. In Advances on P2P, Parallel, Grid, Cloud and Internet Computing: Proceedings of the 14th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC-2019) 14
(pp. 914-925). Springer International Publishing.
Gerlach, M., Peixoto, T. P., & Altmann, E. G. (2018). A network approach to topic models. Science Advances, 4(7), pp.1–11. doi:10.1126/sciadv.aaq1360 PMID:30035215
Greene, D., O’Callaghan, D., & Cunningham, P. (2014). How many topics? Stability analysis for topic models. 10.1007/978-3-662-44848-9_32
Han, J. (2015). A study on Eileen Chang’s novels from the perspective of abnormal psychology. [Dissertation]. Northeast Normal University.
Hess, U. (2014). 'Anger is a positive emotion', in The positive side of negative emotions, pp. 55–75. The Guilford Press.
Hoyan, C. H. (1996). The life and works of Zhang Ailing: a critical study (Doctoral dissertation, University of British Columbia).
Hu, X. (2023). ‘A Brief Analysis of Eileen Chang’s Creative Style, Female Consciousness, and Female Care.’ Literature and Art Weekly, 2, pp.49-52.
Hu, J. (2022). The collision between drama and film of a love legend: a review of the Tim Yip version of Love in a Fallen City. Drama Home, 36, 6-8.
Huang, Q. (2022). ‘On the Generational Spiral Narrative of Eileen Chang's Works.’ Chinese Modern Literature Research Series, 3, 213-227. doi:10.16287/j.cnki.cn11-2589/i.2022.03.004.
Ibrahim, R., Elbagoury, A., Kamel, M. S., & Karray, F. (2018). Tools and approaches for topic detection from Twitter streams: survey. Knowledge and Information Systems, 54, 511-539.
Jacobs, A. M. (2019). 'Sentiment analysis for words and fiction characters from the perspective of computational (neuro-) poetics'. Frontiers in Robotics and AI, 6, 53-54.
Jockers, M. L., & Mimno, D. (2013). ‘Significant themes in 19th-century literature’. Poetics, 41(6), 750-769.
Li, X. (2011). 'Discussing Modern Urban Civilization in Eileen Chang's Eyes: Taking Love in a Fallen City as an Example.’ Lanzhou Academic Journal, 6, 172-185.
Li, X. (2022). 'On the Gains and Losses of Eileen Chang's Creation from the Perspective of Political Culture'. Hebei University.
Long, H., & So, R. J. (2016). ‘Literary pattern recognition: Modernism between close reading and machine learning’. Critical inquiry, 42(2), 235-267.
Louie, K. (Ed.). (2012). Eileen Chang: Romancing Languages, Cultures and Genres (Vol. 1). Hong Kong University Press.
Mohammad, S. M., & Turney, P. D. (2013). ‘Crowdsourcing a word–emotion association lexicon’. Computational Intelligence, 29(3), 436–465. doi:10.1111/j.1467-8640.2012.00460.x
Mohammed, S. H., & Al-augby, S. (2020). Lsa & lda topic modeling classification: Comparison study on e-books. Indonesian Journal of Electrical Engineering and Computer Science, 19(1), 353-362.
Moretti, F. (2013). Distant reading. Verso Books.
Mutanga, M. B., & Abayomi, A. (2022). Tweeting on COVID-19 pandemic in South Africa: LDA-based topic modelling approach. African Journal of Science, Technology, Innovation and Development, 14(1), 163-172.
Nalisnick, E. T., & Baird, H. S. (2013, August). Character-to-character sentiment analysis in Shakespeare's plays. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), 479-483.
Negara, E. S., Triadi, D., & Andryani, R. (2019, October). Topic modelling twitter data with latent dirichlet allocation method. In 2019 International Conference on Electrical Engineering and Computer Science (ICECOS) (pp. 386-390). IEEE.
Noordewier, M. K., & Breugelmans, S. M. (2013). ‘On the valence of surprise’, Cognition and Emotion, 27(7), pp. 1326–1334. https://doi.org/10.1080/02699931.2013.777660
Piper, A. (2019). Enumerations: data and literary study. University of Chicago Press.
Plutchik, R. (1980). 'A general psychoevolutionary theory of emotion', in Theories of emotion, pp. 3–33. Elsevier. https://doi.org/10.1016/B978-0-12-558701-3.50007-7
Plutchik, R. (1982). 'A psychoevolutionary theory of emotions', Social Sciences Information. Information Sur les Sciences Sociales, 21(4–5), pp. 529–553. https://doi.org/10.1177/053901882021004003
Quinn, K. M., Monroe, B. L., Colaresi, M., Crespin, M. H., Radev, D. R., Purpura, S., Schrodt, P., Sin, G., Sinclair, B., Ward, M., Wilkerson, J., Wood, D., & Zorn, C. (2010). 'How to analyse political attention with minimal assumptions and costs'. American Journal 21 Political Science, 54(1), 209–228. doi:10.1111/j.1540- 5907.2009.00427.x
Rebora, S. (2023). Sentiment Analysis in Literary Studies. A Critical Survey. DHQ: Digital Humanities Quarterly, 17(3).
Rehurek, R., & Sojka, P. (2010). ‘Software framework for topic modelling with large corpora’. Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks. Doi:10.1.1.695.4595
Snodgrass, M. E. (2014). Encyclopedia of Gothic literature. Infobase Publishing.
Stine, R. A. (2019). Sentiment analysis. Annual Review of Statistics and Its Application, 6(1), 287–308. doi:10.1146/annurev-statistics-030718-105242
Stranisci, M. A., Spillo, G., Musto, C., Patti, V., & Damiano, R. (2022). The URW-KG: a resource for tackling the underrepresentation of non-western writers. arXiv preprint arXiv:2212.13104.
Taufek, T. E., Nor, N. F. M., Jaludin, A., Tiun, S., Choy, L. K., & Aziz, J. (2022). Media Report About Climate Change in an English Online Malaysian Newspaper Through Thematic and Discourse Analysis Approaches. 3L: Southeast Asian Journal of English Language Studies, 28(2).
TenHouten, W. D. (2014). Emotion and reason: Mind, brain, and the social domains of work and love. Routledge. https://doi.org/10.4324/9780203093634
Toutanova, K., & Johnson, M. (2007). ‘A Bayesian LDA-based model for semi-supervised part-of-speech tagging’. Advances in neural information processing systems, 20.
Uglanova, I., Gius, E., Karsdorp, F., McGillivray, B., Nerghes, A., & Wevers, M. (2020). The Order of Things. A Study on Topic Modelling of Literary Texts. CHR, (18-20), 2020.
Underwood, T. (2019). Distant horizons: digital evidence and literary change. University of Chicago Press.
Wilkens, M. (2015). ‘Digital humanities and its application in the study of literature and culture’. Comparative Literature, 67(1), 11-20.
Winarko, E., & Pulungan, R. (2019). Trending topics detection of Indonesian tweets using BN-grams and Doc-p. Journal of King Saud University-Computer and Information Sciences, 31(2), 266-274.
Yang, C. (2016). 'Narrative Space in Eileen Chang's Novels.' Academic Exploration, 6, 135-141.
Yuan, R., Vengadasamy, R., & Zheng, Y. (2024). A Bibliometric Analysis of Study on Eileen Chang Using CiteSpace. SAGE Open, 14(2).
Zheng, S. (2017). 'A Comparison of Family Views in Maugham and Eileen Chang's Novels.' Journal of Nanjing University of Science and Technology (Social Science Edition), 2, 67-71.
Zendah, J. H., & Maghari, A. Y. (2019). Detecting Significant Events in Arabic Microblogs using Soft Frequent Pattern Mining. Journal of Engineering Research & Technology, 6(1).
DOI: http://dx.doi.org/10.17576/3L-2025-3101-21
Refbacks
- There are currently no refbacks.
eISSN : 2550-2247
ISSN : 0128-5157